Fall 2024 Math F251X

Calculus 1: Midterm 2

Name:	Section: □ 9:15am (James Gossell)
	□ 11:45am (Jill Faudree)
	□ 11:45am (Leah Berman)
	□ asvnc (James Gossell)

Rules:

- Partial credit may be awarded, but you must show your work.
- You may have a single handwritten $3'' \times 5''$ notecard, both sides.
- Calculators are **not** allowed.
- Place a box around your FINAL ANSWER to each question where appropriate.
- Turn off anything that might go beep during the exam.

Good luck!

Problem	Possible	Score
1	12	
2	12	
3	10	
4	11	
5	12	
6	12	
7	12	
8	9	
9	10	
Extra Credit	5	
Total	100	

1. (12 points)

Evaluate the following limits. **Show your work**, uncluding appropriate use of limit notation. If you use L'Hôpital's rule, you must indicate where you are using it by writing $\stackrel{H}{=}$ or $\stackrel{L'H}{=}$ or something similar. Use ∞ or $-\infty$ where appropriate, and if the limit does not exist, write DNE and provide a justification.

a.
$$\lim_{t \to 2} \frac{e^{t-2} - t + 1}{t^2 - 4t + 4}$$

b.
$$\lim_{x \to \infty} \frac{3x - x^4}{3x^4 - 4x^3 - 1}$$

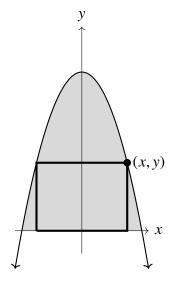
$$\mathbf{c.} \lim_{\theta \to 0} \frac{4\sin(\theta) - 4}{1 - \theta - e^{\cos(\theta)}}$$

v1

2

2. (12 points)

We want to determine the dimensions of the rectangle of maximum area that is inscribed between the parabola $y = 7 - x^2$ and the x-axis. Assume the base of the rectangle is on the x-axis. (See figure below; the rectangle should be inside the shaded area.)



a. Find an expression for the area *A* of the rectangle as a function of one variable.

- **b.** State the appropriate domain of the area function given the context of the problem.
- **c**. Use Calculus to determine where the area is maximized. Justify your conclusion with work.

d. Answer the question:

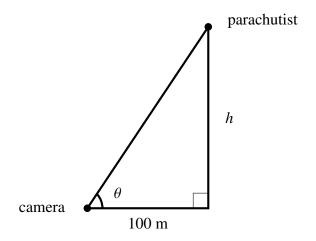
The dimensions of the rectangle with largest area are

Math F251X: Midterm 2 Fall 2024

3. (10 points)

A camera at ground level is 100 meters from the landing site of a parachutist who is landing vertically. Let h be the height of the parachutist above the ground and let θ be the angle of elevation formed between the camera lens and the ground. (See figure.)

a. Find an equation relating h and θ .



b. Suppose the height of the parachutist decreases at a constant rate of 5 meters per second. At what rate does the angle θ decrease when the parachutist is 200 meters in the air? **Answer the question with a complete sentence, including units.**

4. (11 points)

Consider the function $g(x) = \frac{x^{2/3}}{x-3}$. After simplification, $g'(x) = \frac{-(x+6)}{3x^{1/3}(x-3)^2}$.

- **a**. What are the critical numbers of g(x)?
- **b.** At what x-values does g(x) have local maximum(s)? At what x-values does g(x) have local minimum(s)? Clearly show work to **justify** your answers.

Local maximum(s): x = _____ Local minimum(s): x = _____ (If none, write "none".)

c. Does g(x) have any horizonal asympotes? If it does, write the equations of any horizontal asymptote(s) of g(x), and justify each answer by writing a limit. If it doesn't, explain why g(x) does not have any horizontal asymptotes and write "none".

5. (12)

Sketch a graph of a function f(x) that satisfies all of the following properties.

After drawing the graph:

- Label on the graph the following things, if they exist, by drawing a point on the graph and labeling: any local maximums by writing LOCAL MAX, local minimums by writing LOCAL MIN, inflection points by writing IP
- Draw any horizontal and vertical asymptotes with dashed lines and label them with their equation.
- Mark any important x-values and y-values on the x- and y-axes.

Properties:

• Domain is $(-\infty, -1) \cup (-1, \infty)$

1 is
$$(-\infty, -1) \cup (-1, \infty)$$

•
$$f(3) = 4$$
 and $f'(3) = 0$

$$\bullet \lim_{x \to -1^+} f(x) = -\infty$$

•
$$f'(x) > 0$$
 on $(-\infty, -1) \cup (-1, 3)$

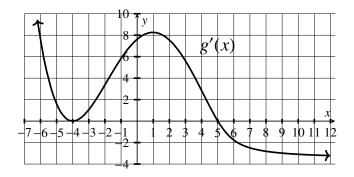
•
$$f'(x) < 0$$
 on $(3, \infty)$

•
$$f''(x) > 0$$
 on $(-\infty, -1) \cup (5, \infty)$

•
$$f''(x) < 0$$
 on $(-1, 5)$

6. (12 points)

The graph shown below is the graph of the **derivative** g'(x) of a function g(x). Answer the following questions about the **original** function g(x).



a. Determine the critical numbers of g(x). (Notice that g(x) is **not** shown on the graph!)

b. Determine the intervals where g is increasing and where g is decreasing. If none write "none".

Increasing: _____

Decreasing:____

c. Fill in the blanks (if none, write "none"):

g(x) has (a) local maximum(s) at x = _____ and (a) local minimum(s) at x = _____.

d. Find all intervals where g is **concave up** and where g is **concave down**. (If none write "none".)

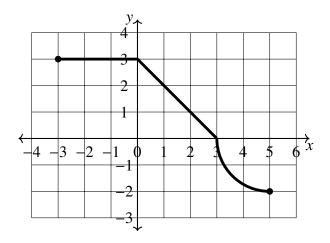
Concave up: _____

Concave down:

e. Fill in the blanks: g(x) has (an) inflection point(s) at x = ______. (If none, write "none".)

7. (12 points)

The graph of the function G(x) is below. The function G(x) has domain [-3, 5] and the portion of the graph on the interval [3, 5] is one quarter of a circle of radius 2 centered at the point (5, 0).



a. Determine $\int_{-1}^{3} G(x) dx$.

b. Determine $\int_{-3}^{5} G(x) dx.$

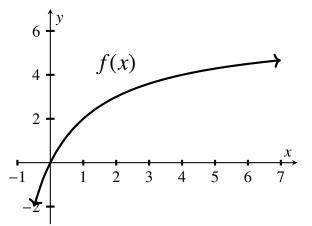
c. Determine $\int_{-3}^{5} 2G(x) + 5 dx$ (Hint: Use part (b) above.)

8. (9 points)

Consider the function

$$f(x) = \frac{6x}{x+2}.$$

A portion of the graph of this function is shown to the right.



a. Compute R_3 on the interval [0,6]. That is, approximate $\int_0^6 f(x) dx$ using 3 right-hand rectangles. Draw the rectangles on the graph.

b. List **two distinct strategies** to compute a more accurate approximation of $\int_0^6 f(x) dx$.

9. (10 points)

Evaluate the indefinite integrals below. (Give the most generic answer.)

a.
$$\int (4x^4 + \sin(x) - e^x + \sqrt{2}) dx$$

b.
$$\int \frac{1 + x^{\frac{2}{3}} + x^3}{x} \, dx$$

Math F251X: Midterm 2 Fall 2024

Extra Credit (5 points)

A population of bacteria can be modeled by the function $P(t) = t^{k/t}$, where t is time, measured in hours, P is the number of bacteria, measured in thousands, and k is a fixed positive constant.

a. Compute $\lim_{t\to\infty} P(t)$.

b. Interpret this limit by writing a complete sentence, including units, using the context of the model.