
Fall 2024 Math F251X

Calculus 1: Midterm 2
Name: Section: □ 9:15am (James Gossell)

□ 11:45am (Jill Faudree)
□ 11:45am (Leah Berman)
□ async (James Gossell)

Rules:

• Partial credit may be awarded, but you must show your work.

• You may have a single handwritten 3′′ × 5′′ notecard, both sides.

• Calculators are not allowed.

• Place a box around your FINAL ANSWER to each question where appropriate.

• Turn off anything that might go beep during the exam.

Good luck!

Problem Possible Score

1 12

2 10

3 12

4 11

5 12

6 12

7 12

8 9

9 10

Extra Credit 5

Total 100
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1. (12 points)

Evaluate the following limits. Show your work, uncluding appropriate use of limit notation. If you use
L’Hôpital’s rule, you must indicate where you are using it by writing H

= or L′H
= or something similar. Use

∞ or −∞ where appropriate, and if the limit does not exist, write DNE and provide a justification.

a. lim
x→∞

2x − 4x3

x3 − 4x2 − 6

b. lim
t→3

et−3 − t + 2
t2 − 6t + 9

c. lim
θ→0

2 sin(θ) − 2
1 − θ − ecos(θ)
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2. (10 points)

A camera at ground level is 100 meters from the landing site of a parachutist who is landing vertically. Let
h be the height of the parachutist above the ground and let θ be the angle of elevation formed between the
camera lens and the ground. (See figure.)

a. Find an equation relating h and θ.

θ

100 m

h

camera

parachutist

b. Suppose the height of the parachutist decreases at a constant rate of 5 meters per second. At what
rate does the angle θ decrease when the parachutist is 200 meters in the air? Answer the question
with a complete sentence, including units.
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3. (12 points)

We want to determine the dimensions of the rectangle of maximum area that is inscribed between the
parabola y = 5 − x2 and the x-axis. Assume the base of the rectangle is on the x-axis. (See figure below;
the rectangle should be inside the shaded area.)

x

y

(x, y)

a. Find an expression for the area A of the
rectangle as a function of one variable.

b. State the appropriate domain of the area
function given the context of the prob-
lem.

c. Use Calculus to determine where the area is maximized. Justify your conclusion with work.

d. Answer the question:
The dimensions of the rectangle with largest area are
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4. (11 points)

Consider the function g(x) =
x2/3

x − 5
. After simplification, g′(x) =

−(x + 10)
3x1/3(x − 5)2 .

a. What are the critical numbers of g(x)?

b. At what x-values does g(x) have local maximum(s)? At what x-values does g(x) have local mini-
mum(s)? Clearly show work to justify your answers.

Local maximum(s): x = Local minimum(s): x =

(If none, write “none”.)

c. Does g(x) have any horizonal asympotes? If it does, write the equations of any horizontal asymp-
tote(s) of g(x), and justify each answer by writing a limit. If it doesn’t, explain why g(x) does not
have any horizontal asymptotes and write “none”.

Horizontal asymptote equation(s):

(If none, write “none”.)
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5. (12 points)

Sketch a graph of a function f (x) that satisfies all of the following properties.

After drawing the graph:

• Label on the graph the following things, if they exist, by drawing a point on the graph and labeling:
any local maximums by writing LOCAL MAX, local minimums by writing LOCAL MIN, inflection
points by writing IP

• Draw any horizontal and vertical asymptotes with dashed lines and label them with their equation.

• Mark any important x-values and y-values on the x- and y-axes.

Properties:

• Domain is (−∞, 1) ∪ (1,∞)

• f (4) = −1 and f ′(4) = 0

• lim
x→1+

f (x) = ∞

• f ′(x) < 0 on (−∞, 1) ∪ (1, 4)

• f ′(x) > 0 on (4,∞)

• f ′′(x) < 0 on (−∞, 1) ∪ (6,∞)

• f ′′(x) > 0 on (1, 6)
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6. (12 points)

The graph shown below is the graph of the derivative g′(x) of a function g(x). Answer the following
questions about the original function g(x).

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−4

−2

2

4

6

8

10

g′(x)

x

y

a. Determine the critical numbers of g(x). (Notice that g(x) is not shown on the graph!)

b. Determine the intervals where g is increasing and where g is decreasing. If none write “none”.

Increasing: Decreasing:

c. Fill in the blanks (if none, write “none”):

g(x) has (a) local maximum(s) at x = and (a) local minimum(s) at x = .

d. Find all intervals where g is concave up and where g is concave down. (If none write “none”.)

Concave up: Concave down:

e. Fill in the blanks: g(x) has (an) inflection point(s) at x = . (If none, write “none”.)
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7. (12 points)

The graph of the function G(x) is below. The function G(x) has domain [−3, 5] and the portion of the
graph on the interval [3, 5] is one quarter of a circle of radius 2 centered at the point (5, 0).

x

y

−4 −3 −2 −1 0 1 2 3 4 5 6

−3

−2

−1

1

2

3

4

a. Determine
∫ 3

−2
G(x) dx.

b. Determine
∫ 5

−3
G(x) dx.

c. Determine
∫ 5

−3
2G(x) + 3 dx (Hint: Use part (b) above.)
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8. (9 points)

Consider the function

f (x) =
2x

8 − x
.

A portion of the graph of this function is shown to
the right.

−1 1 2 3 4 5 6 7

−2

2

4

6 f (x)

x

y

a. Compute R3 on the interval [0, 6]. That is, approximate
∫ 6

0
f (x) dx using 3 right-hand rectangles.

Draw the rectangles on the graph.

b. List two distinct strategies to compute a more accurate approximation of
∫ 6

0
f (x) dx.

9. (10 points)

Evaluate the indefinite integrals below. (Give the most generic answer.)

a.
∫ (

3x3 + cos(x) − ex +
√

5
)

dx

b.
∫

1 + x
1
3 + x4

x
dx
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Extra Credit (5 points)

A population of bacteria can be modeled by the function P(t) = tk/t, where t is time, measured in hours, P
is the number of bacteria, measured in thousands, and k is a fixed positive constant.

a. Compute lim
t→∞

P(t).

b. Interpret this limit by writing a complete sentence, including units, using the context of the model.
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