Your Name
Solutions
Instructor Name
\square

Problem	Total Points	Score
1	16	
2	12	
3	6	
4	6	
5	8	
6	10	
7	6	
8	10	
9	6	
10	100	
11	Total	

- This test is closed notes and closed book.
- You may not use a calculator.
- In order to receive full credit, you must show your work. Be wary of doing computations in your head. Instead, write out your computations on the exam paper.
- PLACE A BOX AROUND YOUR FINAL ANSWER to each question where appropriate.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1. (16 points) Find the derivative for each of the following functions. (For parts (a)-(c), you do not need to simplify your answers.)

$$
\begin{aligned}
& \text { (a) } h(x)=\frac{\arctan (x)}{1+x} \\
& h^{\prime}(x)=\frac{(1+x)\left(\frac{1}{1+x^{2}}\right)-1 \cdot \arctan (x)}{(1+x)^{2}}=\frac{(1+x)-\left(1+x^{2}\right) \arctan (x)}{(1+x)^{2}\left(1+x^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\text { (b) } f(x) & =\sec \left(\sqrt{1-x^{2}}\right)=\sec \left(\left(1-x^{2}\right)^{1 / 2}\right) \\
f^{\prime}(x) & =\sec \left(\left(1-x^{2}\right)^{1 / 2}\right) \tan \left(\left(1-x^{2}\right)^{1 / 2}\right)\left(\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2}\right)(-2 x) \\
& =-\frac{x \sec \left(\sqrt{1-x^{2}}\right) \tan \left(\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}}
\end{aligned}
$$

(c) $y=\frac{3}{x}+3 \ln (x)-\tan (3 \pi)=3 \boldsymbol{x}^{-1}+3 \ln (\boldsymbol{x})-\tan (3 \pi)$

$$
y^{\prime}=-3 x^{-2}+\frac{3}{x}
$$

(d) $2 x^{2}-5 x y+4 y^{2}=2$ (Solve for $d y / d x$.) (Implicit differentiation.)

$$
\begin{aligned}
& 4 x-5 \cdot y-5 x \cdot \frac{d y}{d x}+8 y \frac{d y}{d x}=0 \\
& (8 y-5 x)\left(\frac{d y}{d x}\right)=5 y-4 x \\
& \frac{d y}{d x}=\frac{5 y-4 x}{8 y-5 x}
\end{aligned}
$$

2. (12 points) Evaluate the following integrals.
(a)

$$
\begin{aligned}
g(x) & =\int\left(\frac{2}{x}+2 x^{1 / 3}-e^{2}\right) d x=2 \ln (|x|)+2 \cdot \frac{3}{4} x^{4 / 3}-e^{2} x+C \\
& =2 \ln (|x|)+\frac{3}{2} x^{4 / 3}-e^{2} x+C
\end{aligned}
$$

(b) $h(x)=\int 4 \cos ^{3}(x) \sin (x) d x=-4 \int u^{3} d u=-u^{4}+C$
let $u=\cos x$

$$
d u=-\sin x d x
$$

$$
=-(\cos x)^{4}+c
$$

$$
\begin{aligned}
\text { (c) } f(x)=\int(x \sqrt{2 x-1}) d x & =\frac{1}{2} \int\left(\frac{u+1}{2}\right) u^{\frac{1}{2}} d u=\frac{1}{4} \int(u+1) u^{\frac{1}{2}} d u \\
\text { let } u=2 x-1 & =\frac{1}{4} \int\left(u^{\frac{3}{2}}+u^{\frac{1}{2}}\right) d u=\frac{1}{4}\left[\frac{2}{5} u^{\frac{5}{2}}+\frac{2}{3} u^{\frac{3}{2}}\right]+c \\
\quad d u=2 d x & =\frac{1}{10}(2 x-1)^{5 / 2}+\frac{1}{16}(2 x-1)^{3 / 2}+c
\end{aligned}
$$

$$
x=\frac{u+1}{2}
$$

3. (6 points) Let $f(x)=\frac{1}{x}$.
(a) Find the average rate of change of f from $x=1$ to $x=3$. Simplify your answer if possible.

$$
\underset{r .0 . c .}{\arg .}=\frac{f(3)-f(1)}{3-1}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1}\right)=\frac{1}{2}\left(\frac{-2}{3}\right)=\frac{-1}{3}
$$

(b) Find $f^{\prime}(x)$ using the definition of the derivative.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x-(x+h)}{(x+h)(x)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-h}{(x+h)(x)}\right)=\lim _{h \rightarrow 0} \frac{-1}{(x+h)(x)}=\frac{-1}{x^{2}}
\end{aligned}
$$

4. (6 points) Let $f(x)=x^{2 / 3}$.

$$
\begin{aligned}
& \text { (a) Find the linearization } L(x) \text { of } f(x) \text { at } x=8 . \\
& f(x)=x^{2 / 3}, f(8)=8^{2 / 3}=4=y . \\
& f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}=\frac{2}{3 x^{1 / 3}} ; f^{\prime}(8)=\frac{2}{3(8)^{1 / 3}}=\frac{2}{3 \cdot 2}=\frac{1}{3}=m \\
& y-4=\frac{1}{3}(x-8) \text { or } L(x)=4+\frac{1}{3}(x-8)
\end{aligned}
$$

(b) Use your answer in part a to estimate $(8.1)^{2 / 3}$. Write your answer as a common fraction.

$$
\begin{aligned}
(8.1)^{2 / 3} & =f(8.1) \approx L(8.1)=4+\frac{1}{3}(8.1-8)=4+\frac{1}{3}\left(\frac{1}{10}\right) \\
& =4+\frac{1}{30}=\frac{121}{30}
\end{aligned}
$$

5. (8 points) The height, h, of water in a ditch is given by

$$
h(t)=\frac{2+\sin (\pi t)}{1+t}
$$

where h is measured in feet and t is measured in days.
(a) Find and interpret $h(3)$ in the context of the problem. (Your expression for $h(3)$ should be simplified.)

$$
h(3)=\frac{2+\sin (3 \pi)}{1+3}=\frac{2}{4}=\frac{1}{2} \text { feet }
$$

After 3 days have passed, there is $\frac{1}{2}$ foot of water in the ditch.
(b) Find $h^{\prime}(t)$. (You do not need to simplify your answer.)

$$
h^{\prime}(t)=\frac{(1+t)(\cos (\pi t))(\pi)-(1)(2+\sin (\pi t))}{(1+t)^{2}}
$$

(c) Interpret $h^{\prime}(3) \approx-0.91$ in the context of the problem.

After 3 days, the height of water in the ditch is decreasing at a rate of 0.91 ft perclay.
(d) Find and interpret $\lim _{t \rightarrow \infty} h(t)$. (Hint: $-1 \leq \sin (x) \leq 1$.)

$$
\lim _{t \rightarrow \infty} \frac{2+\sin (t)}{1+t}=0 \text { since } \frac{1}{1+t} \leq \frac{2+\sin (t)}{1+t}<\frac{3}{1+t} \text { and } \lim _{t \rightarrow \infty} \frac{1}{1+t}=0
$$

and $\lim _{t \rightarrow \infty} \frac{3}{1+t}=0$.
This limit tells us that, eventually, the ditch has no water.
6. (10 points) A landscape architect wishes to enclose a rectangular garden on one side by a brick wall costing $\$ 30$ per foot and on the other three sides with a metal fence costing $\$ 10$ per foot. The area of the garden is to be $800 \mathrm{ft}^{2}$. What are the dimensions of the garden that minimize the cost of the fencing? (For full credit, you must justify your answer.)

goal: minimize cost

$$
\begin{aligned}
& \text { cost }=C=30 y+10 y+2(10)(x)=40 y+20 x . \\
& \text { so } C(x)=40\left(800 x^{-1}\right)+20 x=32000 x^{-1}+20 x .
\end{aligned}
$$

Now $C^{\prime}(x)=-32000 x^{-2}+20 x=0$

$$
20 x=\frac{32000}{x^{2}} \text { or } x^{3}=\frac{32000}{20}=1600
$$

answer the question

So $x=40$.
First Der. Test:

$C(x)$ has a local min at $x=40$.
is $x=40$ a global min?
option : Yes. Because $x=40$ is the only crit. point in the domain in which $C(x)$ is continuous.
option 2 : Yes. Because $C^{\prime \prime}(x)=64000 x^{-3}+20$ which is always positive on in the domain. So $C(x)$ is c cup.
7. (12 points) Let $g(x)=\frac{e^{x}}{1+x}$. Note first and second derivatives are

$$
g^{\prime}(x)=\frac{x e^{x}}{(1+x)^{2}} \quad \text { and } \quad g^{\prime \prime}(x)=\frac{e^{x}\left(x^{2}+1\right)}{(1+x)^{3}} .
$$

(a) Evaluate the following limits.
i. $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{e^{x}}{1+x} \stackrel{(1)}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{1}=\infty$
ii. $\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow \infty} \frac{e^{-x}}{1-x}=\lim _{x \rightarrow \infty} \frac{1}{e^{x}(1-x)}=0$ since $e^{x}(1-x) \rightarrow-\infty$.
iii. $\lim _{x \rightarrow-1^{-}} g(x)=\lim _{x \rightarrow-1^{-}} \frac{e^{x}}{1+x}=-\infty$ since $e^{x} \rightarrow e^{\frac{1}{e}}$ and $1-x \rightarrow 0^{-}$.
(b) Sketch the graph of $g(x)$. Label any asymptotes, x - and y-intercepts, local minimums and local maximums, and inflection points, if appropriate.
Note (ii) and (iii) imply $y=0$ is a horizontal asymptote and $x=-1$ is a vertical asymptote.

8. (6 points) The graph of the derivative of $f(x), f^{\prime}(x)$, is shown below. Questions (a) through (d) concern the function $f(x)$.

(a) For what intervals(s) is $f(x)$ increasing?
where $f^{\prime}>0$.
Ans: $(-3,-1) \cup(1,2)$
(b) For what intervals (s) is $f(x)$ concave up?
where f^{\prime} is increasing
Ans: $(-\infty,-2)$
(c) What values) of x give $f(x)$ a relative maximum?

$$
x=-1, x=2
$$

Where f^{\prime} change from t to -
(d) What values) of x give $f(x)$ inflection points?

Where f^{\prime} changs from increasing to decreasing.
9. (10 points) The function $f(x)$ has been graphed below. The curve for $0<x<2$ is an upper half circle. Define a new function $g(x)$, as

$$
g(x)=\int_{0}^{x} f(s) d s
$$

Use the graph above to answer the questions below.
Note: Pay attention to whether question concerns the function f, f^{\prime}, g or g^{\prime}.
(a) What is the value of $f(0)$?

$$
f(0)=0
$$

(b) What is the value of $g(3)$?
signed area under curve from $x=0$ to $x=3$

$$
\text { Ans: } \begin{aligned}
& \frac{1}{2} \pi(1)^{2}-\frac{1}{2}(1)(1) \\
= & \frac{1}{2} \pi-\frac{1}{2}=\frac{1}{2}(\pi-1)
\end{aligned}
$$

$$
g(-2)=\int_{0}^{-2} f(s) d s=-\int_{-2}^{0} f(s) d s=-\frac{1}{2}
$$

(d) What is the value of $f^{\prime}(2)$?

DEE.
A corner at $x=2$. So $f^{\prime}(2)$ is undefined.
(e) What is the value of $g^{\prime}(1)$?
$g^{\prime}(x)=f(x)$ by FTC part.
Ans: $g^{\prime}(1)=f(1)=1$
10. (8 points) Snow is accumulating on my deck. The total amount of snow on my deck is $m(t)$ kilograms, where $t>0$ is measured in hours. The instantaneous rate of accumulation is

$$
m^{\prime}(t)=4 t e^{-t^{2}}
$$

kilograms per hour.

(a) At what time is the rate of snow accumulation at its peak?

$$
\begin{aligned}
& \text { want: } m^{\prime \prime}(t)=0 . \\
& \qquad m^{\prime \prime}(t)=4\left[1 \cdot e^{-t^{2}}+t \cdot\left(e^{-t^{2}}\right)(-2 t)\right]=4 e^{-t^{2}}\left[1-2 t^{2}\right]=0
\end{aligned}
$$

$$
t^{2}=\frac{1}{2}
$$

only positive t makes sense.

$$
t= \pm \sqrt{1 / 2}
$$ answer: $t=1 / \sqrt{2} \mathrm{hr}$.

(b) In the diagram above, label the time, t, obtained in part (a). (in red)
(c) Assume that at time $t=0$ there are 10 kg of snow on the deck. How much snow is on the deck at time $t=2$ hours?

$$
\begin{aligned}
\begin{array}{c}
\text { total amount } \\
\text { of } \\
\text { Snow }
\end{array} & =\begin{array}{l}
\text { Snow } \\
\text { present }
\end{array}+\begin{array}{c}
\text { Snow } \\
\text { accumulated }
\end{array} \\
& =10+\int_{0}^{2} 4 t e^{-t^{2}} d t=10+\left[-2 e^{-t^{2}}\right]_{0}^{2} \\
& =10+\left[-2 e^{-4}-\left(-2 e^{0}\right)\right]=10+2\left[1-\frac{1}{e^{4}}\right] \mathrm{kg}
\end{aligned}
$$

11. (6 points) Consider the function $f(x)=x e^{2 x}-2$ graphed below.

(a) Approximate the solution of $f(x)=0$ using JUST ONE iteration of Newton's method starting from an initial guess of $x_{0}=1 / 2$ to compute a new estimate: x_{1}. It is OK to leave your answer unsimplified, but your answer should be an expression you could compute if you had a calculator.

$$
\begin{array}{ll}
f^{\prime}(x)=1 \cdot e^{2 x}+x \cdot e^{2 x} \cdot 2 & \frac{\text { Ans }}{} \\
x_{0}=\frac{1}{2} & x_{1}=\frac{1}{2}-\frac{\frac{1}{2} e^{\prime}-2}{e^{\prime}+\frac{1}{2} e^{\prime} \cdot 2} \\
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} & =\frac{1}{2}-\frac{\frac{1}{2} e-2}{2 e}=\frac{1}{2}-\left(\frac{e-4}{4 e}\right)
\end{array}
$$

(b) In the figure above, indicate the point x_{1} you computed in part (b) and demonstrate in the diagram how x_{1} was obtained from x_{0}.
in red

