Your Name

ions Instructor Name

Your Signature

Problem	Total Points	Score
1	16	
2	12	
3	6	
4	6	
5	8	
6	10	
7	12	
8	6	
9	10	
10	8	
11	6	
Total	100	

- This test is closed notes and closed book.
- You may **not** use a calculator.
- In order to receive full credit, you must **show your work.** Be wary of doing computations in your head. Instead, write out your computations on the exam paper.
- PLACE A BOX AROUND **YOUR FINAL ANSWER** to each question where appropriate.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1. (16 points) Find the derivative for each of the following functions. (For parts (a)-(c), you do not need to simplify your answers.)

(a)
$$h(x) = \frac{\arctan(x)}{1+x}$$

 $h'(x) = \frac{(1+x)(\frac{1}{1+x^2}) - 1 \arctan(x)}{(1+x)^2} = \frac{(1+x)-(1+x^2)\arctan(x)}{(1+x)^2(1+x^2)}$
(b) $f(x) = \sec(\sqrt{1-x^2}) = \sec((1-x^3)^2)$
 $f'(x) = \sec((1-x^3)^2) + \tan((1-x^3)^2)(\frac{1}{2}(1-x^2))(-2x)$
 $= \frac{-x \sec(\sqrt{1-x^2}) + \tan(\sqrt{1-x^2})}{\sqrt{1-x^2}}$
(c) $y = \frac{3}{x} + 3\ln(x) - \tan(3\pi) = 3x^{-1} + 3\ln(x) - 4\tan(3\pi)$
 $y' = -3x^{-2} + \frac{3}{x}$

(d) $2x^2 - 5xy + 4y^2 = 2$ (Solve for dy/dx.) (Implicit differentiation.) $4x - 5 \cdot y - 5x \cdot dy + 8y dy = 0$ $(8y - 5x)(\frac{dy}{dx}) = 5y - 4x$ $\frac{dy}{dx} = \frac{5y - 4x}{8y - 5x}$ 2. (12 points) Evaluate the following integrals.

(12 points) Evaluate the following integrals.
(a)
$$g(x) = \int \left(\frac{2}{x} + 2x^{1/3} - e^2\right) dx = 2 \ln(|x|) + 2 \cdot \frac{3}{4} \times \frac{4}{3} - e^2 \times + C$$

 $= 2 \ln(|x|) + \frac{3}{2} \times \frac{4}{3} - e^2 \times + C$

(b)
$$h(x) = \int 4\cos^{3}(x)\sin(x)dx = -4 \int u \, du = -u + C$$

let $u = \cos x$
 $du = -\sin x \, dx$
 $= -(\cos x) + C$

(c)
$$f(x) = \int (x\sqrt{2x-1}) dx = \frac{1}{2} \int \left(\frac{u+1}{2}\right) u^{\frac{1}{2}} du = \frac{1}{4} \int (u+1) u^{\frac{1}{2}} du$$

let $u = 2x-1$
 $du = 2dx$
 $\frac{1}{2} du = dx$
 $x = \frac{u+1}{2}$
 $\frac{1}{2} u^{\frac{1}{2}} = \frac{1}{4} \int \left(\frac{3}{2} u^{\frac{1}{2}} + \frac{1}{2} u^{\frac{1}{2}}\right) du = \frac{1}{4} \int \left(\frac{2}{5} u^{\frac{1}{2}} + \frac{2}{3} u^{\frac{3}{2}}\right) + c$

- 3. (6 points) Let $f(x) = \frac{1}{x}$.
 - (a) Find the average rate of change of f from x = 1 to x = 3. Simplify your answer if possible.

arg. =
$$\frac{f(3)-f(1)}{3-1} = \frac{1}{2}\left(\frac{1}{3}-\frac{1}{1}\right) = \frac{1}{2}\left(\frac{-2}{3}\right) = -\frac{1}{3}$$

(b) Find f'(x) using the definition of the derivative.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{X - (x+h)}{(x+h)(x)} \right)$$
$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{-h}{(x+h)(x)} \right) = \lim_{h \to 0} \frac{-1}{(x+h)(x)} = \frac{-1}{x^2}$$

4. (6 points) Let
$$f(x) = x^{2/3}$$
.

(a) Find the linearization
$$L(x)$$
 of $f(x)$ at $x = 8$.
 $f(x) = \chi^{2/3}, f(8) = 8^{2/3} = 4 = 4,$
 $f'(x) = \frac{2}{3} \times^{-\frac{1}{3}} = \frac{2}{3 \times \sqrt{3}}; f'(8) = \frac{2}{3(8)} \times^{-\frac{1}{3}} = \frac{2}{3 \cdot 2} = \frac{1}{3} = m.$
 $y - 4 = \frac{1}{3} (x - 8)$ or $L(x) = 4 + \frac{1}{3}(x - 8)$

(b) Use your answer in part *a* to estimate
$$(8.1)^{2/3}$$
. Write your answer as a common fraction.
 $(8.1)^{2/3} = f(8.1) \approx L(8.1) = 4 + \frac{1}{3}(8.1-8) = 4 + \frac{1}{3}(\frac{1}{10})$
 $= 4 + \frac{1}{30} = \frac{121}{30}$

5. (8 points) The height, h, of water in a ditch is given by

$$h(t) = \frac{2 + \sin(\pi t)}{1 + t},$$

where h is measured in feet and t is measured in days.

(a) Find and **interpret** h(3) in the context of the problem. (Your expression for h(3) should be simplified.)

$$h(3) = \frac{2 + \sin(3\pi)}{1 + 3} = \frac{2}{4} = \frac{1}{2}$$
 feet

After 3 days have passed, there is { foot of water in the ditch.

(b) Find
$$h'(t)$$
. (You do not need to simplify your answer.)

$$h'(t) = \frac{(1+t)(\cos(\pi t))(\pi) - (1)(2 + \sin(\pi t))}{(1+t)^{2}}$$

(c) Interpret $h'(3) \approx -0.91$ in the context of the problem. After 3 days, the height of water in the ditch is decreasing at a rate of 0.91 ft perday.

(d) Find and **interpret** $\lim_{t\to\infty} h(t)$. (Hint: $-1 \le \sin(x) \le 1$.)

$$\lim_{t \to \infty} \frac{2 + \sin(t)}{1 + t} = 0 \quad \text{since } \frac{1}{1 + t} \leq \frac{2 + \sin(t)}{1 + t} < \frac{3}{1 + t} \quad \text{and } \lim_{t \to \infty} \frac{1}{1 + t} = 0$$

and
$$\lim_{t \to \infty} \frac{3}{1 + t} = 0.$$

This limit tells us that, eventually, the ditch has no water.

6. (10 points) A landscape architect wishes to enclose a rectangular garden on one side by a brick wall costing \$30 per foot and on the other three sides with a metal fence costing \$10 per foot. The area of the garden is to be 800ft². What are the dimensions of the garden that minimize the cost of the fencing? (For full credit, you must justify your answer.)

$$goal: minimize cost
Cost = C = 30 y + 10 y + 2(10)(x) = 40 y + 20x.
So $C(x) = 40 (800 x^{-1}) + 20x = 32000 x^{-1} + 20x.$
Now $C'(x) = -32000 x^{-2} + 20x = 0$
 $20x = \frac{32000}{x^2} \text{ or } x^3 = \frac{32000}{20} = 1600$
So $x = 40.$
First Der. Test: $(---0 + + + + sign$
First Der. Test: $(---0 + + + + sign$
 $C(x)$ has a local min at $x = 40.$
Is $x = 40$ a global min?
Optian!: Yes. Because $x = 40$ is the
only crid. point in the domain
in which $C(x)$ is compilied.
 $\frac{0ptian2}{2}$: Yes. Because $C''(x) = 64000x^{-3} + 20$
which is always positive an in the
demain. So $C(x)$ is ccup.$$

7. (12 points) Let
$$g(x) = \frac{e^x}{1+x}$$
. Note first and second derivatives are
 $g'(x) = \frac{xe^x}{(1+x)^2}$ and $g''(x) = \frac{e^x(x^2+1)}{(1+x)^3}$. **(a)** Evaluate the following limits.
i. $\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{e^x}{1+x} = \lim_{x \to \infty} \frac{e^x}{1} = \infty$
ii. $\lim_{x \to -\infty} g(x) = \lim_{x \to \infty} \frac{e^x}{1-x} = \lim_{x \to \infty} \frac{1}{e^x(1-x)} = 0$ since $e^x(1-x) = -\infty$.
iii. $\lim_{x \to -\infty} g(x) = \lim_{x \to \infty} \frac{e^x}{1-x} = -\infty$ since $e^x = \frac{1}{1-x} = \frac{1}{1+x} = -\infty$

(b) Sketch the graph of g(x). Label any asymptotes, x- and y-intercepts, local minimums and local maximums, and inflection points, if appropriate.

8. (6 points) The graph of **the derivative** of f(x), f'(x), is shown below. Questions (a) through (d) concern the function f(x).

(a) For what intervals(s) is f(x) increasing?

(b) For what intervals(s) is f(x) concave up?

(c) What value(s) of x give f(x) a relative maximum?

(d) What value(s) of x give f(x) inflection points?

Where f' changes from increasing to dicreasing. x = -2

9. (10 points) The function f(x) has been graphed below. The curve for 0 < x < 2 is an upper half circle. Define a new function g(x), as

Use the graph above to answer the questions below. Note: Pay attention to whether question concerns the function f, f', g or g'.

(a) What is the value of f(0)?

(b) What is the value of
$$g(3)$$
?
Signed Area under curve: Ans: $\frac{1}{2}\pi(1)^2 - \frac{1}{2}(1)(1)$
from x=0-10 x=3
(c) What is the value of $g(-2)$?
 $g(-2) = \int_{0}^{-2} f(s) ds = -\int_{-2}^{0} f(s) ds = -\frac{1}{2}$
(d) What is the value of $f'(2)$?
DNE.
A corner at x=2. So $f'(2)$ is undefined.
(e) What is the value of $g'(1)$?
 $g'(2) = f(2)$ by FTC part I.
Ans: $g'(1) = f(1) = 1$

10. (8 points) Snow is accumulating on my deck. The total amount of snow on my deck is m(t) kilograms, where t > 0 is measured in hours. The instantaneous rate of accumulation is

$$m'(t) = 4te^{-t^2}$$

kilograms per hour.

(a) At what time is the **rate** of snow accumulation at its peak?

wand:
$$m'(t) = 0$$
.
 $m'(t) = 4 \left[1 \cdot e^{t^{2}} + t \cdot (e^{t^{2}})(-2t)\right] = 4 e^{t^{2}} \left[1 - 2t^{2}\right] = 0$
 $t^{2} = \frac{1}{2}$ only positive t makes sease.
 $t = \pm \sqrt{2}$ answer: $t = \frac{1}{\sqrt{2}}$ hr.

(b) In the diagram above, label the time, t, obtained in part (a). (in red)

(c) Assume that at time t = 0 there are 10kg of snow on the deck. How much snow is on the deck at time t = 2 hours?

total amount
of = Snow + Snow
present + accumulated
snow =
$$10 + \int_{0}^{2} 4te^{-t^{2}} dt = 10 + \left[-2e^{-t^{2}}\right]_{0}^{2}$$

= $10 + \left[-2e^{-4} - (-2e^{0})\right] = 10 + 2\left[1 - \frac{1}{e^{4}}\right] kg$

11. (6 points) Consider the function $f(x) = xe^{2x} - 2$ graphed below.

(a) Approximate the solution of f(x) = 0 using **JUST ONE** iteration of Newton's method starting from an initial guess of $x_0 = 1/2$ to compute a new estimate: x_1 . It is OK to leave your answer unsimplified, but your answer should be an expression you could compute if you had a calculator.

(b) In the figure above, indicate the point x_1 you computed in part (b) and demonstrate in the diagram how x_1 was obtained from x_0 .

in red