

Instructor Name
\square

Problem	Total Points	Score
1	15	
2	15	
3	10	
4	20	
5	15	
6	15	
7	(5)	
Extra Credit	100	
Total		

- This test is closed notes and closed book.
- You may not use a calculator.
- In order to receive full credit, you must show your work. Be wary of doing computations in your head. Instead, write out your computations on the exam paper.
- PLACE A BOX AROUND YOUR FINAL ANSWER to each question where appropriate.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Geometric Formulas
sphere
$V=\frac{4}{3} \pi r^{3}$
$A=4 \pi r^{2}$
cylinder
$V=\pi r^{2} h$
cone

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
A & =\pi r \sqrt{r^{2}+h^{2}}
\end{aligned}
$$

1. (15 points) Consider the function $f(x)=\frac{(x-1)^{3}}{x^{2}}$. We have computed for you

$$
f^{\prime}(x)=\frac{(x-1)^{2}(x+2)}{x^{3}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{6 x-6}{x^{4}}
$$

For full credit, show your work.
(a) Find the intervals where $f(x)$
$f^{\prime}=0$ whee $x=1$ and $x=-2$
f^{\prime} undefined when $x=0$

f is increasing on $(-\infty,-2) \cup(0, \infty)$ and decreasing on $(-2,0)$
(b) Find the intervals where $f(x)$ is concave up and concave down.

f is cap on $(1, \infty)$ and ccdown on $(-\infty, 0) \cup(0,1)$
(c) Classify all critical points of $f(x)$.
$x=1$: neither. f^{\prime} doesint change signs on either side of $x=1$.
$x=-2$: local max. $f^{\prime \prime}(-2)<0$.
(Note $x=0$ NoT a critical point because it init in the domain of $f(x)$.)
2. (15 points) Evaluate the following limits. [Note: You should be careful to apply L'Hospital's rule only when appropriate.]
(a) $\lim _{x \rightarrow 0} \frac{\ln (x+1)}{1-e^{5 x}} \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{\frac{1}{x+1}}{-5 e^{5 x}}=\frac{\frac{1}{1}}{-5}=\frac{-1}{5}$ form 0
$\begin{aligned} & \text { (b) } \begin{aligned} \lim _{x \rightarrow 0^{+}} \sqrt{x} \ln x\end{aligned}=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1 / 2}} \stackrel{(1)}{=} \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{2} x^{-3 / 2}}=\lim _{x \rightarrow 0^{+}} \frac{1}{x} \cdot \frac{-2}{1} \cdot x^{3 / 2} \\ & \text { form } 0 \cdot-\infty \text { form } \frac{-\infty}{\infty} \quad=\lim _{x \rightarrow 0^{+}}-2 x^{1 / 2}=0\end{aligned}$
(c) $\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{1-\cos \theta}=\frac{\sin \pi}{1-\cos (\pi)}=\frac{0}{2}=0$
3. (10 points) Show that the point on the curve $y=\frac{1}{x}$ with $x>0$ that is closest to the point $(0,0)$ is the point $(1,1)$. For full credit, you must provide an argument showing that an absolute minimum is attained at the stated point.

goal: minimize distance r (squared.)

$$
D=(x-0)^{2}+(y-0)^{2}=x^{2}+y^{2}
$$

$$
D(x)=x^{2}+\left(\frac{1}{x}\right)^{2}=x^{2}+x^{-2}
$$

domain $(0, \infty)$.

$$
D^{\prime}(x)=2 x-2 x^{-3}=0 ; \text { so } x-\frac{1}{x^{3}}=0 \text { or } x^{4}-1=0
$$

crit. pts: $x= \pm 1$. only $x=1$ is in our domain.

First Derivative Test implies D has a local min (a) $x=1$.
(1) It has an absolute minimum here because f is decreasing on the left of 1 and increasing on the right for every x-value in the domain.
$D^{\prime \prime}(x)=2+6 x^{2}>0$ for all x.
(2) So D is concave up everywhere on $(0, \infty)$.

So a local minimum is an absolute minimum.
4. (20 points) Sketch the graph of a function $f(x)$ that has the following properties.

- $f(x)$ is defined for all x except $x=-1$.
- $f(-3)=1, f(-2)=2, f(0)=0$, and $f(2)=2$.
- $f(x)$ has a vertical asymptote at $x=-1$.
- $\lim _{x \rightarrow-\infty} f(x)=0$ and $\lim _{x \rightarrow \infty} f(x)=3$.

- $f^{\prime}(x)$ is zero at $x=-2$ and $x=0$, is positive for $x<-2,-2<x<-1$ and $x>0$, and is negative elsewhere.
- $f^{\prime \prime}(x)$ is zero at $x=-3, x=-2$ and $x=2$, is positive for $x \leq-3, \underset{\nrightarrow}{-2}<x<-1$ and $-1<x<2$, and is negative elsewhere.
On your graph, mark each point of inflection with a box, and classify l all of the

5. (15 points)
(a) Find the linearization of $f(x)=\sin (x)$ at $x=\pi / 4$.

$$
f(\pi / 4)=\sin (\pi / 4)=\sqrt{2} / 2
$$

$$
f^{\prime}(x)=\cos x
$$

$$
f^{\prime}(\pi / 4)=\cos (\pi / 4)=\sqrt{2} / 2
$$

point: $\left(\frac{\pi}{4}, \sqrt{2} / 2\right)$; slope: $m=\sqrt{2} / 2$
eq. of line: $y-\sqrt{2} / 2=\sqrt{2} / 2\left(x-\frac{\pi}{4}\right)$
answer: $L(x)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)$
(b) Use your linearization to approximate $\sin \left(\frac{\pi}{4}+\frac{1}{10}\right)$. Express your answer as a single fraction.

$$
\begin{aligned}
L\left(\frac{\pi}{4}+\frac{1}{10}\right) & =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(\frac{\pi}{4}+\frac{1}{10}-\frac{\pi}{4}\right) \\
& =\frac{\sqrt{2}}{2}\left(1+\frac{1}{10}\right)=\frac{\sqrt{2}}{2}\left(\frac{11}{10}\right)=\frac{11 \sqrt{2}}{20}
\end{aligned}
$$

6. (15 points) Air is being slowly released from a spherical balloon. At time $t=0$, the radius of the balloon is observed to be 10 cm and the radius is observed to be decreasing at the rate of $1 \mathrm{~cm} / \mathrm{s}$.
(a) Determine the rate of change of volume of the balloon when $r=10$.

$$
\begin{aligned}
& \text { at } t=0, r=10 \mathrm{~cm} \\
& \frac{d r}{d t}=-1 \frac{\mathrm{~cm}}{s} \\
& \text { goal: Find } \frac{d V}{d t} \text { when } r=10 \text {. } \\
& V=\frac{4}{3} \pi r^{3} \\
& \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}
\end{aligned}
$$

Plugin

$$
\frac{d v}{d t}=4 \pi(10)^{2}(-1)
$$

$$
=-400 \pi \mathrm{~cm}^{3} / \mathrm{s}
$$

(b) Assuming the rate of change of volume remains constant, how long will it take to empty the balloon?

$$
\text { at } t=0, r=10 ; \text { So } V=\frac{4}{3} \pi 10^{3}=\frac{4000 \pi}{3} \mathrm{~cm}^{3}
$$

$\frac{d V}{d t}=-400 \pi \mathrm{~cm}^{3} / \mathrm{s}$ (i ie Each second, the Volume e V is decreasing by $400 \pi \mathrm{~cm}^{3}$)

How long to empty?

$$
\begin{aligned}
& \text { How long to empty. } \\
& \frac{v}{\left|\frac{d y}{d t}\right|}=\frac{4000 \pi / 3}{400 \pi}=\frac{10}{3} \mathrm{sec} .
\end{aligned}
$$

7. (10 points) For each of the following scenarios, draw the graph of a function $f(x)$ with domain all of \mathbb{R} that has a derivative at every point and that satisfies the desired criteria.
(a) The function attains an absolute maximum value and has a local minimum, but does not attain an absolute minimum value.

(b) The function has a critical point, but at no point has a local minimum or maximum value.

[5 points extra credit:] Formally state the Mean Value Theorem and use it to prove that for all real numbers a and b where $a<b$,

$$
-(b-a) \leq \sin b-\sin a \leq b-a
$$

If $f(x)$ is counts on $[a, b]$ and differentiable on (a, b), then there is a c in (a, b) So that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Pick $f(x)=\sin x$. So $f^{\prime}(x)=\cos x$. Also, f is continuous t differentiable for all \mathbb{R}. Now MUThm says there is' c in (a, b) so that :

$$
\cos c=\frac{\sin (b)-\sin (a)}{b-a} \text { or }(b-a) \cos c=\sin b-\sin a \text {. }
$$

But $-1 \leq \cos c \leqslant 1$.

$$
\begin{aligned}
& \text { But }-1 \leq \cos c \leqslant 1 \\
& \text { So: }-(b-a) \leq \sin b-\sin a \leq(b-a) .
\end{aligned}
$$

