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Your Name Your Signature

Solutisns

Instructor Name

Problem Total Points Score

1 15

2 15

3 10

4 20

5 15

6 15

7 10
Extra Credit (5)
Total 100

e This test is closed notes and closed book.
e You may not use a calculator.

e In order to receive full credit, you must show your work. Be wary of doing computations
in your head. Instead, write out your computations on the exam paper.

e PLACE A BOX AROUND |YOUR FINAL ANSWER/| to each question where
appropriate.

e If you need more room, use the backs of the pages and indicate to the reader that you have
done so.

e Raise your hand if you have a question.

Geometric Formulas

cone
sphere cylinder V= %7”,2 h
— 4.3 _ 2
Vi =zmr V =mrh A = 7ry/r? 4+ h?

A = 4mr?
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1. (15 points) Consider the function f(z) = (@ o ) . We have computed for you
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For full credit, show your work.
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(b) Find the intervals where f(z) is concave up and concave down.
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(c) Classify all critical points of f(x).
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2. (15 points) Evaluate the following limits. [Note: You should be careful to apply L’'Hospital’s
rule only when appropriate.]

| L
. )
(a) ﬁmhi(x—t,xl) = w0V L |1
o f_e 20 -5 -5 5
tm%
L %
(b) lim Vzlnz = lin- lh)( @ ‘ﬂw ___>—<—' = hh‘" _L.’;.)(
z—07+ - - - N "3/2 )(, |
r =287 x (- ) S 1% 4 )(-—'70"’
Lorm o.._ ! \
2o form 22 , 2
o = llw -2¥%
Xt

@ im0 _ SInTT o I:
6—r 1 —cost = — —____:D ‘
l—sar) 2



MaTH 251 CALcuLus I MiDTERM 11 SPRING 2018

3. (10 points) Show that the point on the curve y = % with z > 0 that is closest to the point
(0,0) is the point (1,1). For full credit, you must provide an argument showing that an
absolute minimum is attained at the stated point.
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4. (20 points) Sketch the graph of a function f(z) that has the following properties.

e f(x) is defined for all x except x = —1. /
a .\f i

o f(=3)=1, f(=2) =2, f(0) =0, and f(2) = 2. v/ 4’.

L
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e f(x) has a vertical asymptote at z = —1. 'l ( ()
e lim,, o f(z) =0 and lim, , f(z) = 3. v -V
e f'(x)is zero at x = —2 and = = 0, is positive for z < =2, =2 <z < —1 and x > 0,

and is negative elsewhere.

e f"(x)is zero at x = —3, x = —2 and x = 2, is positive for z < =3, =2 < x < —1 and
. . ~ + + —
—1 < x < 2, and is negative elsewhere. . ; t t —\
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5. (15 points)

) Find the linearization of f(z) = sin(z) at = /4.
(774\ S m(/h 1)2/2
£(D) = Cos
/ 7\ - ﬁ/
¢ (,’"7'43 — cos( A) = /2
pPont: (% )’ﬁ/z\) glope: m= ﬁ/z
2§ of line: Y- % - (x-Z)
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(b) Use your linearization to approximate sin (% + %) Express your answer as a single
fraction.
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6. (15 points) Air is being slowly released from a spherical balloon. At time t = 0, the radius
of the balloon is observed to be 10 cm and the radius is observed to be decreasing at the

rate of 1 cm/s.

(a) Determine the rate of change of volume of the balloon when r = 10.
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(b) Assuming the rate of change of volume remains constant, how long will it take to empty

the balloon?
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7. (10 points) For each of the following scenarios, draw the graph of a function f(x) with
domain all of R that has a derivative at every point and that satisfies the desired criteria.

(a) The function attains an absolute maximumy value and has a local minimum, but does
not attain an absolute minimum value.
a,bS-

M — M)

Y

-

local

Min

S——pt abselud

(b) The function has a critical point, but at no point has a local minimum or maximum
value.

[5 points extra credit:] Formally state the Mean Value Theorem and use it to prove that for
all real numbers a and b where a < b,

—(b—a) <sinb—sina < b — a.
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