Name:

## Rules:

You have 2 hours to complete the final exam.
Partial credit will be awarded, but you must show your work.
You may have a single handwritten $3 \times 5$ notecard.
Calculators are not allowed.
Place a box around your FINAL ANSWER to each question where appropriate.
Turn off anything that might go beep during the exam.
Good luck!

| Problem | Possible | Score |
| :---: | :---: | :---: |
| 1 | 8 |  |
| 2 | 8 |  |
| 3 | 8 |  |
| 4 | 10 |  |
| 5 | 12 |  |
| 6 | 10 |  |
| 7 | 12 |  |
| 8 | 12 |  |
| 9 | 12 |  |
| 10 | 8 |  |
| Extra Credit | 5 |  |
| Total | 100 |  |

1. (8 points) Evaluate the limits. An answer without clear, mathematically precise work, will not earn full credit. Any use of L'Hôpital's Rule should be indicated using an $\mathbf{H}$ over the equal sign.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{\cos \left(\frac{\pi}{2} x\right)}$
(b) $\lim _{x \rightarrow-\infty} \frac{1-x^{3}}{2 x^{3}+4 x^{2}-9}$
2. (8 points) Find the derivative. You do not need to simplify your answer.
(a) $B(x)=(1+\sqrt{x}) \ln \left(5 x^{2}+x\right)$
(b) $\cos (2 x)+x e^{y}=4 y^{3}\left(\right.$ Find $\frac{d y}{d x}$.)
3. (8 points) Evaluate the integrals. You do not need to simplify your answer.
(a) $\int\left(3 \sec ^{2}(\theta)+\frac{6}{\theta}+\ln (2)\right) d \theta$
(b) $\int \frac{2}{1+\frac{4}{9} t^{2}} d t$
4. (10 points) An box with a square base and an open top has volume $4000 \mathrm{~cm}^{3}$. What dimensions of the box will minimize its surface area?
You must show your work and use calculus to justify your answer.
(a) Draw and label a diagram. Then write an equation for the surface area of the box in terms of a single variable.
(b) Use Calculus to find the dimensions of the box that minimize the surface area.
5. (12 points) The velocity of an object is given by $v(t)=\frac{t}{t^{2}+1}$ on the interval $[0, \infty$ ), where $v$ is measured in meters per second and $t$ is measured in seconds.
(a) Find an expression for $s(t)$, the position of the particle at time $t$, if $s=1$ when $t=0$.
(b) Find an expression for $a(t)$, the acceleration of the object at time $t$.
(c) Determine at what time, $t$, is the velocity of the particle maximized. Use Calculus to show that your answer is correct..
6. (10 points) Use the axes below to sketch a graph of a function $g(x)$ that satisfies all of the conditions in the bulleted list. Make sure to label any asymptotes, minimums or maximums, and inflection points. (See check list.)


- $g(x)$ is continuous on its domain $(-\infty, 1) \cup(1, \infty)$.
- $g(-1)=1, g^{\prime}(-1)=0$
- $\lim _{x \rightarrow 1^{-}} g(x)=\infty$, $\lim _{x \rightarrow 1^{+}} g(x)=-\infty$
- $g^{\prime}(x)>0$ on $(-1,1) \cup(1, \infty)$
- $g^{\prime}(x)<0$ on $(-\infty,-1)$
- $g^{\prime \prime}(x)>0$ on $(-3,1)$
- $g^{\prime \prime}(x)<0$ on
$(-\infty,-3) \cup(1, \infty)$

Did you ....
$\square$ label any asymptotes with its equation?
$\square$ label any maximums or minimums with local min, local max, absolute min, or absolute max? $\square$ label any inflection points with inflection point?
7. (12 points) The rate of change of the volume of water in a tank is given by

$$
r(t)=\frac{1}{2} t-5
$$

where $r$ is measured in liters per minute and $t$ is measured in minutes since the monitoring began.
(a) Compute $r(0)$ and $r(30)$. Then explain what these numbers mean in language the general public would understand.
(b) Compute the net change in the volume of water in liters from time $t=0$ to time $t=10$.
(c) At time $t=0$, the tank contains 200 liters of water. What is the volume of water in the tank at time $t=10$ ?
8. (12 points) Consider the function $f(x)$ with domain $[0,8]$ graphed below.

(a) What is the value of $f(4)$ ?
(b) What is the value of $f^{\prime}(2)$ ?
(c) Evaluate $\int_{2}^{7} f(x) d x$.

The following questions concern $A(x)=\int_{0}^{x} f(s) d s$.
(d) What is the value of $A(4)$ ?
(e) What is the value of $A^{\prime}(6)$.
(f) Does $A(x)$ have a maximum? Explain your answer.
9. (12 points) The temperature of a cup of coffee is modeled by the function

$$
f(t)=110 e^{-t / 10}+40
$$

where $f$ is measured in degrees Fahrenheit and $t$ is measured in minutes after the coffee was poured into the cup.
(a) Compute $f^{\prime}(0)$. Then explain what this number means in language the general public could understand.
(b) Compute $\lim _{t \rightarrow \infty} f(t)$. Then explain what this number means in language the general public could understand.
10. (8 points) The radius of a spherical balloon is increasing at a rate of $2 \mathrm{~cm} / \mathrm{s}$. At what rate is the surface area of the balloon changing when the radius of the balloon is 5 cm ? (Note that the surface area of a sphere is given by $S A=4 \pi r^{2}$.) Include units with your answer.

Extra Credit (5 points) The graph of the function $f(x)=\frac{1}{2} x^{5}-x-\frac{1}{4}$ is shown.
a. Suppose Newton's method is used to find an approximate solution to $f(x)=0$ from an initial guess of $x_{1}=1$. Sketch on the graph how the next approximation $x_{2}$ will be found, labeling its location on the $x$-axis.
b. For $x_{1}=1$, give a formula for $x_{2}$. You do not need to simplify, but your answer should be in a form where a calculator would compute a numerical value.


