Name: Solutions

Rules:

You have 90 minutes to complete the exam.
Partial credit will be awarded, but you must show your work.
You may have a single handwritten 3×5 notecard.
Calculators are not allowed.
Place a box around your FINAL ANSWER to each question where appropriate.
Turn off anything that might go beep during the exam.
Good luck!

Problem	Possible	Score
1	12	
2	8	
3	10	
4	20	
5	12	
6	15	
7	6	
8	17	
Extra Credit	5	
Total	100	

1. (12 points)
(a) State the definition of $f^{\prime}(x)$, the derivative of the function $f(x)$.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(b) Find the derivative of $f(x)=4-\sqrt{x}$ using the limit definition of the derivative. No credit will be awarded for using other methods.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(4-\sqrt{x+h})-(4-\sqrt{x})}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x}-\sqrt{x+h}}{h} \cdot \frac{(\sqrt{x}+\sqrt{x+h})}{(\sqrt{x}+\sqrt{x+h})} \\
& =\lim _{h \rightarrow 0} \frac{x-(x+h)}{h(\sqrt{x}+\sqrt{x+h})}=\lim _{h \rightarrow 0} \frac{-h}{h(\sqrt{x}+\sqrt{x+h})} \\
& =\lim _{h \rightarrow 0} \frac{-1}{\sqrt{x}+\sqrt{x+h}}=\frac{-1}{2 \sqrt{x}}
\end{aligned}
$$

2. (8 points) Use the graph of the function $g(x)$, drawn in the figure below, to sketch the graph of $g^{\prime}(x)$ on the set of axes below.

3. (10 points) Let $f(x)=\left\{\begin{array}{ll}\frac{\sqrt{x}+5}{2} & x<9 \\ 6 & x=9 . \\ 3+e^{x-9} & 9<x\end{array}\right.$.
(a) Show that $\lim _{x \rightarrow 9} f(x)$ exists.

$$
\begin{aligned}
& \lim _{x \rightarrow 9^{-}} f(x)=\lim _{x \rightarrow q^{-}} \frac{\sqrt{x+5}}{2}=\frac{\sqrt{9}+5}{2}=\frac{3+5}{2}=4 \\
& \lim _{x \rightarrow q^{+}} f(x)=\lim _{x \rightarrow 9^{+}} 3+e^{x-9}=3+e^{0}=3+1=4
\end{aligned}
$$

Since the left and right side limits exist and are equal, the two-sided limit exists.
(b) Determine if $f(x)$ is continuous at $x=9$ and justify your answer with a mathematical eq ur

$$
\begin{aligned}
& f(x) \text { is not continuous at } x=9 \text { be cause } \\
& \lim _{x \rightarrow 9} f(x)=4 \neq 6=f(9) .
\end{aligned}
$$

4. (20 points) Evaluate the following limits. Show your work to earn full credit. Be careful to use proper notation.
(a) $\lim _{x \rightarrow c} \frac{\frac{1}{c}-\frac{1}{x}}{x-c}=\lim _{x \rightarrow c} \frac{\frac{x-c}{c x}}{x-c}=\lim _{x \rightarrow c} \frac{1}{c x}=\frac{1}{c^{2}}$
(b) $\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}}{x^{2}-2}=\frac{\sqrt{4}}{4^{2}-2}=\frac{2}{16-2}=\frac{2}{14}=\frac{1}{7}$
(c) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{2 x^{2}-5 x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{(x-3)(2 x+1)}=\lim _{x \rightarrow 3} \frac{x+3}{2 x+1}=\frac{3+3}{2 \cdot 3+1}=\frac{6}{7}$ form $\frac{0}{0}$
(d) $\lim _{x \rightarrow-1^{-}} \frac{8-8 x}{1-x^{2}}=-\infty$

$$
\tau_{\text {form }} \frac{16}{0}
$$

as $x \rightarrow-1^{-}$(so x-values like -1.001)

$$
1-x^{2} \rightarrow 0^{-} \text {and } 8-8 x \rightarrow 16
$$

So the quotient is $-\infty$.
5. (12 points) The function $g(x)=x^{2}(x-1)+4$ is graphed below.

$$
\begin{aligned}
& g(x)=x^{3}-x^{2}+4 \\
& g^{\prime}(x)
\end{aligned}=3 x^{2}-2 x \quad \begin{aligned}
g^{\prime}(-1) & =3(-1)^{2}-2(-1) \\
& =3+2=5 \\
g(-1) & =(-1)^{3}-(-1)^{2}+4 \\
& =-1-1+4 \\
& =2
\end{aligned}
$$

(a) Sketch and label the tangent line to the graph of $g(x)$ when $x=-1$.
(b) Write an equation of the tangent line to $g(x)$ when $x=-1$.
point $(-1,2)$
slope $m=5$
line: $y-2=5(x+1)$

$$
y=2+5(x+1)
$$

(c) Find all x-values where the graph of $g(x)$ has a horizontal tangent or explain why none exist. Find x-values where $g^{\prime}(x)=3 x^{2}-2 x=0$ So $x(3 x-2)=0$.
So $x=0$ or $x=2 / 3$
6. (15 points) Find the derivative of each function below. You do not need to simplify your answer. Be careful to appropriately parenthesize your answer.

$$
\begin{aligned}
& \text { (a) } f(x)=2 x^{5}+\frac{2}{x^{5}}+2 \sqrt{5}=2 x^{5}+2 x^{-5}+2 \sqrt{5} \\
& f^{\prime}(x)=10 x^{4}-10 x^{-6}
\end{aligned}
$$

(b) $H(\theta)=\theta^{2 / 3} \sin (\theta)$

$$
H^{\prime}(\theta)=\frac{2}{3} \theta^{-1 / 3} \cdot \sin (\theta)+\theta^{2 / 3} \cos (\theta)
$$

(c) $j(x)=\frac{x}{\pi+\cos (x)}$

$$
j^{\prime}(x)=\frac{(\pi+\cos (x))(1)-x(-\sin (x))}{(\pi+\cos (x))^{2}}=\frac{\pi+\cos (x)+x \sin (x)}{(\pi+\cos (x))^{2}}
$$

7. (6 points) The function $V(T)$ models the volume of a fixed mass of a given gas with respect to temperature assuming pressure remains constant. Assume V is measured in milliliters (or $m L$) and T is measured in kelvins (or K).
(a) Interpret in the context of the problem the meaning of $V(100)=60$. Include units. At a temperature of 100 Kelvins, the volume of the gas is 60 mL .
(b) Interpret in the context of the problem the meaning of $V^{\prime}(100)=0.4$. Include units. At a temperature of 100 Kelvins, the volume of gas is increasing at a rate of 0.4 mL per Kelvin.
(c) Using the facts that $V(100)=60$ and $V^{\prime}(100)=0.4$, estimate $V(110)$. Include units.

$$
V(110)=V(100)+10 \cdot V^{\prime}(100)=60+10(0.4)=64 \mathrm{~K} .
$$

8. (17 points) A spring is hanging from the ceiling with a mass attached to it. The mass is oscillating vertically with simple harmonic motion. The function $h(t)=6-\cos (t)$ models the height of the spring above the floor starting at time $t=0$ where h is measured in feet and t is measured in seconds. For all problems below, include appropriate units.

$$
\begin{aligned}
& h(t)=6-\cos (t) \\
& h(\pi)=6-\cos (\pi)=7 \\
& h(0)=6-\cos (0)=5
\end{aligned}
$$

(a) Find the average velocity of the mass in the time interval $[0, \pi]$ seconds.

$$
\underset{\operatorname{vel}}{\operatorname{avg}}=\frac{\Delta h}{\Delta t}=\frac{h(\pi)-h(0)}{\pi-0}=\frac{7-5}{\pi}=\frac{2}{\pi} \mathrm{ft} / \mathrm{s}
$$

(b) Find the equations for the velocity and acceleration of the mass.

$$
\begin{aligned}
& h^{\prime}(t)=\sin (t) \mathrm{ft} / \mathrm{s} \\
& h^{\prime \prime}(t)=\cos (t) \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

(c) Find the instantaneous velocity of the mass at $\pi / 4$ seconds.

$$
h^{\prime}\left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)=\sqrt{2} / 2 \quad \mathrm{ft} / \mathrm{s}
$$

(d) At $t=\pi / 4$, is the mass going up or going down?
going up
(e) At what times does the mass change direction?

Check for $V^{\prime}(t)=0$.
Solve $\sin (t)=0$
So $t=0, \pi, 2 \pi, 3 \pi, \ldots$

Extra Credit: (5 points) Use the Intermediate Value Theorem to demonstrate that the function $f(x)=$ $x^{3}-3 x-19$ has a root (or zero) in the interval [1,5]. A complete answer requires some calculations and complete sentences justifying your conclusion.

Since $f(x)$ is a polynomial, it is continuous and the Intermediate Value Theorem applies.
Observe that $f(1)=1^{3}-3(1)-19<0$ and

$$
f(5)=5^{3}-3 \cdot 5-19>0
$$

Since $f(1)<0$ and $f(5)>0$, the Intermediate Value Theorem implies that $f(x)=0$ for some x-value between 1 and 5 .

