Math F251 Midterm 2

Name: Solutions

Rules:

You have 90 minutes to complete the exam.
Partial credit will be awarded, but you must show your work.
You may have a single handwritten 3×5 notecard.
Calculators are not allowed.
Place a box around your FINAL ANSWER to each question where appropriate.
Turn off anything that might go beep during the exam.
Good luck!

Problem	Possible	Score
1	10	
2	10	
3	12	
4	14	
5	16	
6	10	
7	8	
8	8	
9	12	
Extra Credit	5	
Total	100	

1. (10 points) If a airplane is flying at a constant speed of 100 miles per hour and is climbing at a an angle of 30 degrees, at what rate is its altitude changing? Your final answer should include units.

Setup

$$
\begin{aligned}
& \sin \left(30^{\circ}\right)=\frac{h}{p} \\
& \text { want } \frac{d h}{d t} \\
& \text { Know } \frac{d p}{d t}=100 \mathrm{mph}
\end{aligned}
$$

Recall $\sin \left(30^{\circ}\right)=\frac{1}{2}$.

Use $\quad \frac{1}{2} p=h$.
So $\frac{1}{2} \frac{d p}{d t}=\frac{d h}{d t}$
So $\frac{1}{2} 100=\frac{d h}{d t}$
Answer: The height is increasing at a rate of 50 mph .
2. (10 points)
(a) Find the linear approximation, $L(x)$, to $f(x)=\sqrt{x}$ at $a=25$.

$$
\begin{array}{ll}
f(25)=\sqrt{25}=5 & y-5=\frac{1}{10}(x-25) \\
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} & y=5+\frac{1}{10}(x-25) \\
f^{\prime}(25)=\frac{1}{2} \cdot \frac{1}{\sqrt{25}}=\frac{1}{10} & L(x)=5+\frac{1}{10}(x-25)
\end{array}
$$

(b) Use your answer in part a to estimate $\sqrt{23}$. Your answer should be in the form of a simplified fraction or a decimal.

$$
\sqrt{23} \approx L(23)=5+\frac{1}{10}(23-25)=5-\frac{2}{10}=\frac{48}{10}=4.8
$$

3. (12 points) Evaluate the indefinite integrals below.
(4) $\int\left(\sin ^{2 x} \sec \sec (x) \ln (x) d x=\frac{8 x^{5 / 3}}{\frac{5}{3}}+\sec (x)+C=\frac{24}{5} x^{5 / 3}+\sec (x)+c\right.$
(b) $\int\left(e^{x}+2\right) d x=e^{x}+2 x+C$
(c) $\int \frac{1+x^{3}}{x^{2}} d x=\int\left(x^{-2}+x\right) d x=-x^{-1}+\frac{1}{2} x^{2}+C$
4. (14 points) Let $f(x)=\ln \left(x^{2}+2\right)$. It is a fact that $f^{\prime}(x)=\frac{2 x}{x^{2}+2}$ and $f^{\prime \prime}(x)=\frac{-2\left(x^{2}-2\right)}{\left(x^{2}+2\right)^{2}}$. (a) Determine intervals where $f(x)$ is increasing or decreasing.

$$
\begin{aligned}
& f^{\prime}(-1)=\frac{-}{t} \\
& f^{\prime}(1)=\frac{ \pm}{t}
\end{aligned}
$$

Answer: f is increasing on ($0, \infty$).
f is decreasing on $(-\infty, 0)$
(b) Determine the x-values of any local maxima or minima or state that none exist. and stets the maximum or miniman value.

Answer: $f(x)$ has a minimum of $\ln (2)$ at $x=0$.
$f(x)$ has no maximum
(c) Determine intervals where $f(x)$ is concave up or concave down.

$$
f^{\prime \prime}=0 \text { when } x= \pm \sqrt{2} \quad f^{\prime \prime}(-10)=\frac{(-)(+)}{4}=-
$$

Answer: f is cup on $(-\sqrt{2}, \sqrt{2})$, ccdown on $(-\infty,-\sqrt{2})$
(d) Determine of all inflection points or state that none exist. $\cup(\sqrt{2}, \infty)$ Identify

$$
\begin{aligned}
& (-\sqrt{2}, f(-\sqrt{2}))=(-\sqrt{2}, \ln (4)) \\
& (\sqrt{2}, f(\sqrt{2}))=(\sqrt{2}, \ln (4))
\end{aligned}
$$

5. (16 points) Evaluate the limits below. You must show your work. Indicate an application of L'Hôpital's Rule by putting an H above equal sign.

(b) $\lim _{\substack{x \rightarrow \infty \\ \text { form }}}^{\ln (x)} \stackrel{(11)}{x^{(1 / 2}} \lim _{x \rightarrow \infty} \frac{\frac{1}{x^{-1}}}{\frac{1}{2} x^{-1 / 2}}=\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{x}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0$
(c) $\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{2 x}}=e^{1 / 2}$
$\lim _{x \rightarrow 0^{+}} \frac{1}{2 x} \ln (1+x)=\underset{\substack{\text { change } \\ \lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)}{2 x}}}{\stackrel{(1+)}{=}} \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{1+x}}{2}=\frac{1}{2}$
6. (10 points) An open-topped box with a square base has fixed surface area of $1200 \mathrm{in}^{2}$. Determine the dimensions of the box with maximum volume.

Goal: Maximize volume $V=x^{2} y$
Constraint:

$$
\begin{aligned}
& \begin{array}{l}
\text { Surface } \\
\text { area }
\end{array}=S=x^{2}+4 x y=1200 \\
& y=\frac{1200-x^{2}}{4 x}=300 x^{-1}-\frac{1}{4} x
\end{aligned}
$$

Function: $V(x)=x^{2}\left(300 x^{-1}-\frac{1}{4} x\right)=300 x-\frac{1}{4} x^{3}$
domain: $(0, \infty)$
Find crit\#'s:

$$
\begin{aligned}
& V^{\prime}(x)=300-\frac{3}{4} x^{2}=0 \\
& 300=\frac{3}{4} x^{2} \\
& x^{2}=\frac{4 \cdot 300}{3}=400
\end{aligned}
$$

$x= \pm 20$ (only the positive value in domain)
Justify: $V^{\prime \prime}(x)=-\frac{6}{4} x, V^{\prime \prime}(20)<0$. So V is ccdown at $x=20$ is the location of a maximum.
Find $y . \quad y=\frac{1200-400}{80}=\frac{800}{80}=10$
Answer: The dimensions that maximize volume are 20 in $\times 20 \mathrm{in} \times 10 \mathrm{in}$.
7. (8 points) The function $f(x)=\frac{24}{x+1}$ is graphed below. We want to estimate the area under the curve $f(x)$ on the interval $[0,8]$ using M_{4}. (That is, we want to use 4 approximating rectangles with midpoints determining height.)
(a) Sketch the four approximating rectangles on the graph.

(b) Do a calculation to estimate the area under the curve using M_{4} (that is, use 4 approximating rectangles and midpoints) and simplify your answer.

$$
\begin{aligned}
A & \approx M_{4} \\
& =2(f(1)+f(3)+f(5)+f(7)) \\
& =2(12+6+4+3) \\
& =2(25)=50
\end{aligned}
$$

8. (8 points) Evaluate the definite integrals below using the graph of $H(x)$ and properties of definite integrals. On the interval [3,7], the graph of H is a semi-circle. Show your work.

(a)

$$
\begin{aligned}
& =12-\frac{1}{2} \pi \cdot 2^{2}=12-2 \pi
\end{aligned}
$$

(b) $\int_{0}^{3}(4 f(x)+9) d x=4 \int_{0}^{3} f(x)+6 \int_{0}^{3} 1 d x$

$$
=4(6)+6(3)=24+18=42
$$

9. (12 points) Sketch a graph that satisfies all the criteria in the list below.

- Domain $(-\infty, \infty)$
- $f(0)=2$ point $(0,2)$

Extra Credit (5 points) Identify all vertical and horizontal asymptotes of the function $f(x)=\frac{4 e^{x}+1}{7 e^{x}-1}$. Justify your answer using limits.
horizontal asymptotes: $y=\frac{4}{7}$ and $y=-1$ Justification: $\lim _{x \rightarrow \infty} \frac{4 e^{x}+1}{7 e^{x}-1}=\frac{4}{7} ; \lim _{x \rightarrow-\infty} \frac{4 e^{x}+1}{7 e^{x}-1}=\frac{1}{-1}=-1$

Vertical asymptotes: $x=\ln (1 / 7)$ [obtained by Solving:

$$
\left.7 e^{x}-1=0 \text { or } e^{x}=1 / 7\right]
$$

$$
\begin{aligned}
& \text { Justification: } \lim _{x \rightarrow} \frac{4 e^{x}+1}{7 e^{x}-1}=+\infty \\
& \text { since } 4 e^{x}+1>0 \text { forall } x \text { and as } x \rightarrow \ln \left(\frac{1}{7}\right)^{+}, \\
& 7 e^{x}-1 \rightarrow 0^{+} .
\end{aligned}
$$

