Math F251

Midterm 2

Spring 2023

Name: Solutions

Rules:

You have 90 minutes to complete the exam.

Partial credit will be awarded, but you must show your work.

You may have a single handwritten 3×5 notecard.

Calculators are not allowed.

Place a box around your FINAL ANSWER to each question where appropriate.

Turn off anything that might go beep during the exam.

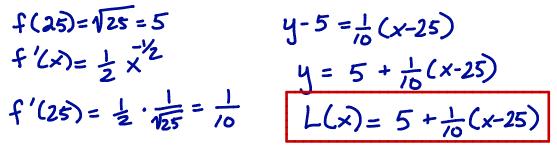
Good luck!

Problem	Possible	Score
1	10	
2	10	
3	12	
4	14	
5	16	
6	10	
7	8	
8	8	
9	12	
Extra Credit	5	
Total	100	

Math 251: Midterm 1

1. (10 points) If a airplane is flying at a constant speed of 100 miles per hour and is climbing at a an angle of 30 degrees, at what rate is its altitude changing? Your final answer should include units.

- 2. (10 points)
 - (a) Find the linear approximation, L(x), to $f(x) = \sqrt{x}$ at a = 25.



(b) Use your answer in part *a* to estimate $\sqrt{23}$. Your answer should be in the form of a simplified fraction or a decimal.

$$\sqrt{23} \approx L(23) = 5 + \frac{1}{10}(23 - 25) = 5 - \frac{2}{10} = \frac{48}{10} = 4.8$$

3. (12 points) Evaluate the indefinite integrals below.

•(a)
$$\int (\Im x^{2/3} + \sec(x)\tan(x)) dx = \frac{\Im x^3}{\frac{5}{3}} + \sec(x) + C = \frac{24}{5} \times \frac{5/3}{3} + \sec(x) + C$$

(b)
$$\int (e^x + 2) dx = e^x + 2x + C$$

• (c)
$$\int \frac{1+x^3}{x^2} dx = \int (x^2 + x) dx = -x^2 + \frac{1}{2}x^2 + C$$

4. (14 points) Let $f(x) = \ln(x^2 + 2)$. It is a fact that $f'(x) = \frac{2x}{x^2 + 2}$ and $f''(x) = \frac{-2(x^2 - 2)}{(x^2 + 2)^2}$.

(a) Determine intervals where f(x) is increasing or decreasing.

 (b) Determine the x-values of any local maxima or minima or state that none exist. and state the maximum or miniman value.

(c) Determine intervals where
$$f(x)$$
 is concave up or concave down.

$$f'' = 0 \quad \text{when } x = \pm \sqrt{2} \qquad f''(-i0) = (-1)(+) = -$$

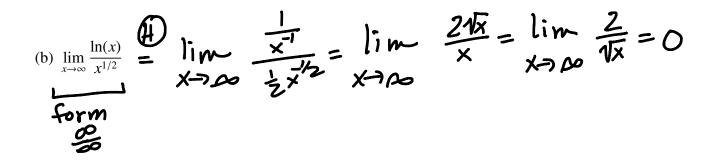
$$f''(-i0) = -$$

$$f''$$

5. (16 points) Evaluate the limits below. You must show your work. Indicate an application of L'Hôpital's Rule by putting an *H* above equal sign.

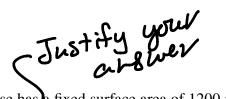
(a)
$$\lim_{x \to 0} \frac{e^{x} - \cos(x)}{4 \tan(x)} \stackrel{\text{lim}}{=} \lim_{x \to 0} \frac{e^{x} + \sin(x)}{4 \sec^{2}(x)} = \frac{e^{0} + \sin(0)}{4 \sec^{2}(0)}$$

form $\frac{6}{0}$
$$= \frac{1+0}{4\cdot 1} = \frac{1}{4}$$



(c)
$$\lim_{x\to 0^+} (1+\chi)^{\frac{1}{2\chi}} = \underbrace{e^{\frac{\chi}{2}}}_{\text{Change}}$$

Change
 $\lim_{x\to 0^+} \frac{1}{2\chi} \ln(1+\chi) = \lim_{X\to 0^+} \frac{\ln(1+\chi)}{2\chi} \stackrel{\text{(H)}}{=} \lim_{X\to 0^+} \frac{1}{2} = \frac{1}{2}$
 $\lim_{X\to 0^+} \frac{1}{2\chi} \ln(1+\chi) = \frac{1}{50 \text{ rm } \frac{9}{6}}$



Spring 2023

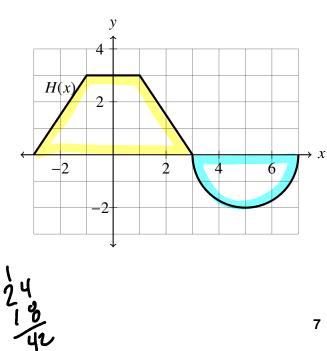
6. (10 points) An open-topped box with a square base has a fixed surface area of $1200 in^2$. Determine the dimensions of the box with maximum volume.

Goal: Maximize Volume
$$V=x^2y$$

Constraint:
Surface $= S = x^2 + 4xy = 1200$
 $y = \frac{1200 - x^2}{4x} = 300x^{-1} - \frac{1}{4}x$
Function: $V(x) = x^2(300x^{-1} - \frac{1}{4}x) = 300x - \frac{1}{4}x^3$
domain: $(0, \infty)$
Find crit #'S: $V'(x) = 300 - \frac{3}{4}x^2 = 0$
 $300 = \frac{3}{4}x^2$
 $x^2 = \frac{4\cdot300}{300} = \frac{400}{4}$
 $x = \pm 20$ (only the positive value in domain)
Justify: $V''(x) = -\frac{4}{4}x$, $V''(20) < D$. So V is codown
at $x = 20$ is the location of a maximum.
Find y. $y = \frac{1200 - 400}{80} = \frac{800}{80} = 10$
Answer: The dimensions that maximize volume
 $at ZO in \times 20in \times 10in$.

- 7. (8 points) The function $f(x) = \frac{24}{x+1}$ is graphed below. We want to estimate the area under the curve f(x) on the interval [0, 8] using M_4 . (That is, we want to use 4 approximating rectangles with midpoints determining height.)
 - (a) Sketch the four approximating rectangles on the graph.
- (b) Do a calculation to estimate the area under the curve using M_4 (that is, use 4 approximating rectangles and midpoints) and simplify your answer.

8. (8 points) Evaluate the definite integrals below using the graph of H(x) and properties of definite integrals. On the interval [3, 7], the graph of *H* is a semi-circle. Show your work.

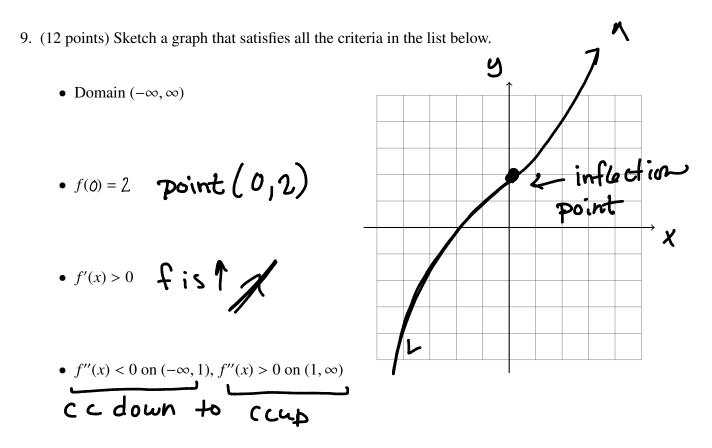


(a)
$$\int_{-3}^{7} f(x) dx = \begin{pmatrix} \text{area} \\ \text{above} \\ x - axis \end{pmatrix} - \begin{pmatrix} \text{area} \\ \text{below} \\ x - axis \end{pmatrix}$$

= $12 - \frac{1}{2} \pi \cdot 2^{2} = 12 - 277$

(b)
$$\int_{0}^{3} (4f(x) + 6) dx = 4 \int_{0}^{3} f(x) + 6 \int_{0}^{3} 1 dx$$

= $4(6) + 6(3) = 24 + 18 = 42$



Extra Credit (5 points) Identify all vertical and horizontal asymptotes of the function $f(x) = \frac{4e^{x+1}}{7e^{x}-1}$. Justify your answer using limits.

horizontal asymptotes:
$$y = \frac{4}{7}$$
 and $y = -1$
Justification: $\lim_{x \to \infty} \frac{4e^{x}+1}{7e^{x}-1} = \frac{4}{7}$; $\lim_{x \to -\infty} \frac{4e^{x}+1}{7e^{x}-1} = \frac{1}{-1} = -1$

Vertical asymptotes:
$$x = ln(\frac{1}{4})$$
 [obtained by solving:
 $7e^{x}-1=0$ or $e^{x}=\frac{1}{4}$]

Justification:
$$\lim_{X \to In(\frac{4}{4})^+} \frac{4e^{x}+1}{7e^{x}-1} = +00$$

Since $4e^{x}+1 > 0$ for all x and as $x \to ln(\frac{1}{4})^+$,
 $7e^{x}-1 \to 0^+$.