Spring 2023

Midterm 2

Math F251

Name:	

Rules:

You have 90 minutes to complete the exam.

Partial credit will be awarded, but you must show your work.

You may have a single handwritten 3×5 notecard.

Calculators are not allowed.

Place a box around your FINAL ANSWER to each question where appropriate.

Turn off anything that might go beep during the exam.

Good luck!

Problem	Possible	Score
1	12	
2	10	
3	10	
4	14	
5	16	
6	10	
7	8	
8	8	
9	12	
Extra Credit	5	
Total	100	

Math 251: Midterm 1

1. (12 points) Evaluate the indefinite integrals below.

(a)
$$\int (8x^{2/3} + \sec(x)\tan(x)) dx = \frac{8 \times \frac{5}{3}}{\frac{5}{3}} + \sec(x) + C = \frac{24}{5} \times \frac{5}{3} + \sec(x) + C$$

(b)
$$\int (e^x + 2) dx = e^x + 2x + c$$

(c)
$$\int \frac{1+x^3}{x^2} dx = \int (x^2 + x) dx = -x^1 + \frac{1}{2}x^2 + C$$

2. (10 points)

(a) Find the linear approximation, L(x), to $f(x) = \sqrt{x}$ at a = 25.

$$f(25) = \sqrt{25} = 5$$

$$f'(x) = \frac{1}{2} x^{-1/2}$$

$$y - 5 = \frac{1}{10} (x - 25)$$

$$y = 5 + \frac{1}{10} (x - 25)$$

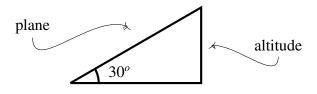
$$f'(25) = \frac{1}{2} \cdot \frac{1}{\sqrt{25}} = \frac{1}{10}$$

$$L(x) = 5 + \frac{1}{10} (x - 25)$$

(b) Use your answer in part a to estimate $\sqrt{23}$. Your answer should be in the form of a simplified fraction or a decimal.

$$\sqrt{23} \approx L(23) = 5 + \frac{1}{10}(23 - 25) = 5 - \frac{2}{10} = \frac{48}{10} = 4.8$$

3. (10 points) If a airplane is flying at a constant speed of 100 miles per hour and is climbing at a an angle of 30 degrees, at what rate is its altitude changing? Your final answer should include units.



Recall sin(300) = = .

Use
$$\frac{1}{2}P = h$$
.

Answer: The height is increasing at a rate of 50 mph.

4. (14 points) Let $f(x) = \ln(x^2 + 2)$. It is a fact that $f'(x) = \frac{2x}{x^2 + 2}$ and $f''(x) = \frac{-2(x^2 - 2)}{(x^2 + 2)^2}$.

(a) Determine intervals where f(x) is increasing or decreasing.

$$f'(x)=0$$
 at $x=0$ $f'(-1)=\frac{1}{7}$
 $\frac{1}{7}$ $\frac{1}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$

Answer:
f is increasing on
(0,00).

f is decreasing on
(-00,0)
and steti

(b) Identify any local maxima or minima or state that none exist and their location.

(Your answer should be in the form: "f has a local maximum/minimum of ____ at ___" or "f has no local maxima/minima.")

Answer: f(x) has a minimum of In(2) at x=0.
f(x) has no maximum

(c) Determine intervals where f(x) is concave up or concave down. $f'' = 0 \text{ when } X = \pm \sqrt{2} \qquad f''(-10) = (-)(+) = - - - 0 + + + 0 - - - + \text{Sign of} \qquad f''(10) = (-)(+) = +$ $- - 10 - \sqrt{2} \qquad 12 \qquad 10$ Answer: f is curp on $(-\sqrt{2}, \sqrt{2})$, and on $(-\infty, -\sqrt{2})$ $U(\sqrt{2}, \infty)$

5. (16 points) Evaluate the limits below. You must show your work. Indicate an application of L'Hôpital's Rule by putting an *H* above equal sign.

(a)
$$\lim_{x\to 0} \frac{e^x - \cos(x)}{4\tan(x)} \stackrel{\text{def}}{=} \lim_{x\to 0} \frac{e^x + \sin(x)}{4\sec^2(x)} = \frac{e^x + \sin(x)}{4\sec^2(x)}$$

$$= \frac{1+0}{4\cdot 1} = \frac{1}{4}$$

$$\lim_{x \to \infty} \frac{\ln(x)}{x^{1/2}} = \lim_{x \to \infty} \frac{1}{2x^{2}} = \lim_{x \to \infty} \frac{21x}{x} = \lim_{x \to \infty} \frac{2}{x} = 0$$
Form
$$\lim_{x \to \infty} \frac{\ln(x)}{x^{1/2}} = \lim_{x \to \infty} \frac{2}{x^{1/2}} = \lim_{x \to \infty} \frac{2}{x} = 0$$

$$\lim_{x\to 0^{+}} (1+x)^{\frac{1}{2x}} = e^{\frac{1}{2}}$$

$$\lim_{x\to 0^{+}} \ln(1+x)^{\frac{1}{2x}} = \lim_{x\to 0^{+}} \frac{\ln(1+x)}{2x} = \lim_{x\to 0^{+}} \frac{1}{1+x} = \frac{1}{2}$$

$$\lim_{x\to 0^{+}} \ln(1+x)^{\frac{1}{2x}} = \lim_{x\to 0^{+}} \frac{\ln(1+x)}{2x} = \lim_{x\to 0^{+}} \frac{1}{2} =$$

6. (10 points) An open-topped box with a square base has a fixed surface area of 1200 in². Determine the dimensions of the box with maximum volume. Justify your answer using Calculus.

Goal: Maximize volume V=x2y

Constraint:

Surface =
$$S = x^2 + 4xy = 1200$$

$$y = \frac{1200 - x^2}{4x} = 300x^{-1} - \frac{1}{4}x$$

Function: $V(x) = x^2(300x^1 - \frac{1}{4}x) = 300x - \frac{1}{4}x^3$

domain: (0,00)

Find crit#'s: $V'(x) = 300 - \frac{3}{4}x^2 = 0$

$$300 = \frac{3}{4} \times^2$$

$$x^2 = 4.300 = 400$$

x= ±20 (only the positive value in domain)

Justify: V"(x) = -4x, V"(20) < 0. So Vis ccdown

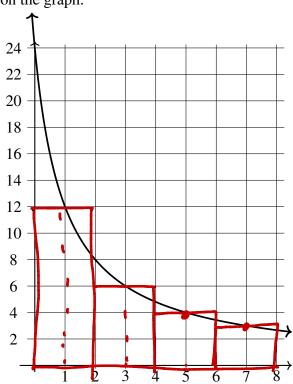
at x=20 is the location of a maximum.

Find y. $y = \frac{1200 - 400}{80} = \frac{800}{80} = 10$

Answer: The dimensions that maximize volume are 20 in × 20 in × 10 in.

7. (8 points) The function $f(x) = \frac{24}{x+1}$ is graphed below. We want to estimate the area under the curve f(x) on the interval [0, 8] using M_4 . (That is, we want to use 4 approximating rectangles with midpoints determining height.)

(a) Sketch the four approximating rectangles on the graph.

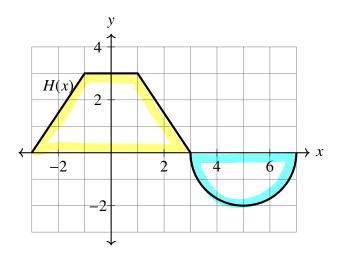


(b) Do a calculation to estimate the area under the curve using M_4 (that is, use 4 approximating rectangles and midpoints) and simplify your answer.

A
$$\approx M_{4}$$

= $2(f(1)+f(3)+f(5)+f(7))$
= $2(12+6+4+3)$
= $2(25) = 50$

8. (8 points) Evaluate the definite integrals below using the graph of H(x) and properties of definite integrals. On the interval [3, 7], the graph of H is a semi-circle. Show your work.



(a)
$$\int_{-3}^{7} f(x) dx = \begin{cases} \text{area} \\ \text{above} \\ \text{x-axis} \end{cases} - \begin{cases} \text{area} \\ \text{below} \\ \text{x-axis} \end{cases}$$
$$= 12 - \frac{1}{2} \pi \cdot 2^{2} = 12 - 27$$

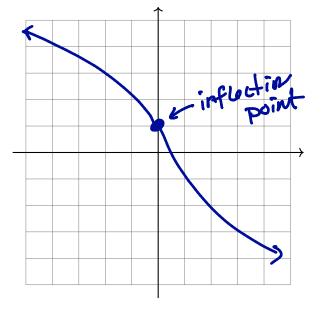
(b)
$$\int_0^3 (4f(x)+6) dx = 4 \int_0^3 f(x) + 6 \int_0^3 1 dx$$

= $4(6) + 6(3) = 24 + 18 = 42$

Math 251: Midterm 1

9. (12 points) Sketch a graph that satisfies all the criteria in the list below.

- Domain $(-\infty, \infty)$
- f(0) = 1 point (0,1)
- f'(x) < 0 on $(-\infty, \infty)$ | Lucrywhere
- f''(x) < 0 on $(-\infty, 0)$, f''(x) > 0 on $(0, \infty)$



Extra Credit (5 points) Identify all vertical and horizontal asymptotes of the function $f(x) = \frac{4e^x + 1}{7e^x - 1}$. Justify your answer using limits.

horizontal asymptotes: $y = \frac{4}{7}$ and y = -1

Justification: $\lim_{x\to a_0} \frac{4e^{x}+1}{7e^{x}-1} = \frac{4}{7}$; $\lim_{x\to -a_0} \frac{4e^{x}+1}{7e^{x}-1} = \frac{1}{-1} = -1$

Vertical asymptotes: x = ln(4) [obtained by solving: $7e^{x}-1=0$ or $e^{x}=\frac{1}{4}$]

Justification: $\lim_{x\to \ln(4)^+} \frac{4e^{x+1}}{7e^{x}-1} = +\infty$

Since 4ex+1>0 forall x and as x= ln(x),
7ex-1=0+.