Calculus I: Final Exam

Name: \qquad

Section: \square 9:15 (Mohamed Nouh) -11:45 (James Gossell) \square Online (Leah Berman)

Rules:

- Partial credit will be awarded, but you must show your work.
- You may have a single handwritten $3^{\prime \prime} \times 5^{\prime \prime}$ notecard, both sides.
- Calculators are not allowed.
- Place a box around your FINAL ANSWER to each question where appropriate.
- Turn off anything that might go beep during the exam.
- You have two hours to complete the exam.

Problem	Possible	Score
1	12	
2	10	
3	10	
4	12	
5	11	
6	10	
7	8	
8	12	
9	11	
10	4	
Extra Credit	(5)	
Total	100	

1. (12 points)

Compute the following integrals. Give the most general answer, and show your work. Clearly indicate any substitutions you use in such a way that someone else can follow your work.
a. $\int \sqrt[4]{x^{3}}+\sqrt{2}-\sin (x) d x$
b. $\int \frac{2 x \ln \left(x^{2}+1\right)}{x^{2}+1} d x$
c. $\int \frac{x^{2}}{\sqrt{1+x^{3}}} d x$

2. (10 points)

Consider the graph of the function $f(x)$ shown below:

a. Compute $\int_{1}^{9} f(x) d x$. Show some work or say something about what you computed.
b. Let $F(t)=\int_{-4}^{t} f(x) d x$. On the interval $[-4,12]$, where is $F(t)$ increasing? Where is $F(t)$ decreasing? Write your answers in interval notation.

- $F(t)$ is increasing on the interval \qquad
- $F(t)$ is decreasing on the interval \qquad
c. Determine $f^{\prime}(1)=$ \qquad
d. Determine
(i) $\lim _{x \rightarrow-1^{-}} f^{\prime}(x)=$ \qquad
(ii) $\lim _{x \rightarrow-1^{+}} f^{\prime}(x)=$ \qquad
(iii) $\lim _{x \rightarrow-1} f^{\prime}(x)=$ \qquad

3. (10 points)

A portion of the implicitly defined curve

$$
y^{2}=x^{3}-3 x+3
$$

is shown in the graph.
a. Use implicit differentiation to find the slope of the tangent line to the curve at the point $(-2,1)$ (shown as the black dot). Please give an exact answer.

b. Write the equation of the tangent line to the curve at the point $(-2,1)$, which is shown with a black dot on the curve. Clearly draw and label the tangent line on the graph.
c. Find the coordinates (as ordered pairs) of all points on the curve where the tangent line is horizontal.
\qquad

4. (12 points)

A surveillance drone rises from the ground. Its upward velocity is can be modelled by the function

$$
v(t)=1-e^{-t}
$$

meters per second at the instant that it is t seconds into its flight.
a. Compute $v(0)$. Write a complete sentence explaining the meaning of $v(0)$ in the context of the problem. Include units in your answer.
b. Compute $\int_{0}^{5} v(t) d t$ and write a sentence to interpret its meaning in the context of the problem. Include units in your answer.
c. Find $v^{\prime}(t)$. Compute $v^{\prime}(0)$ and write a sentence to interpret its meaning in the context of the problem. Include units in your answer.

5. (11 points)

We want to answer the following question: which points on the graph of $y=9-x^{2}$ are closest to the point $(0,4)$?
It is a mathematical fact that to minimize the distance between two points, it is sufficient to minimize the square of the distance. The function

$$
D(x)=(x-0)^{2}+\left(\left(9-x^{2}\right)-4\right)^{2}=x^{4}-9 x^{2}+25
$$

gives the square of the distance between the point $Q=(0,4)$ and an arbitrary point $P=(x, y)=\left(x, 9-x^{2}\right)$ on the graph.

Determine the x-value(s) which minimize $D(x)$ in order to find the point(s) on the graph that are closest to the point $(0,4)$. Use Calculus to justify your answer.

The closest point(s) is/are : \qquad
(your answer should be (an) ordered pair(s)!)

6. (10 points)

A giant spherical snowball is melting. Its volume is decreasing at a rate of 1 cubic meter per hour. How fast is the radius of the snowball decreasing when its radius is 2 meters? (The volume V of a sphere of radius r is given by $V=\frac{4}{3} \pi r^{3}$.)
Write your answer in a complete sentence using units.

7. (8 points)

Compute the following limits. Show your work clearly. Make sure you use limit notation where required; an answer that does not use proper notation will not receive full credit. Use $=$ to show things are equal. If you use L'Hôpital's rule, write $\stackrel{H}{=}$ or $\stackrel{L^{\prime} H}{=}$ to indicate where you are applying it.
a. $\lim _{x \rightarrow \infty} \frac{\ln \left(2 x^{4}+3\right)}{x^{4}}$
b. $\lim _{x \rightarrow 1} \frac{\sqrt{2-x}-x}{x-1}$
8. (12 points)

Compute the following derivatives. Show your work. You do NOT need to simplify your answer. Your answer should start $f^{\prime}(x), \frac{d f}{d x}$ etc.
a. $f(\theta)=\ln (\sec \theta+\cot \theta)$
b. $g(x)=\frac{\sqrt{3}}{4}+\frac{\sqrt{x}}{5}-\frac{5}{\sqrt{x}}$
c. $h(x)=\frac{e^{3 x}}{\sin (x)}$

9. (11 points)

Sketch a graph of a function $h(x)$ that satisfies all of the following properties.
After drawing the graph:

- Label on the graph the following things, if they exist, by drawing a point on the graph and labeling: any local maximums by writing LOCAL MAX, local minimums by writing LOCAL MIN, inflection points by writing IP
- Draw any horizontal and vertical asymptotes with dashed lines and label them with their equation.
- Mark any important x-values and y-values (with numbers) on the x - and y-axes.

Properties:

- The domain of $h(x)$ is $(-\infty, \infty)$
- $h(0)=0$ and $h(2)=2$
- $h^{\prime}(x)<0$ on the interval $(-\infty, 0) \cup(2, \infty)$
- $h^{\prime}(x)>0$ on the interval $(0,2)$
- $h^{\prime \prime}(x)<0$ on the interval $(1,3)$
- $h^{\prime \prime}(x)>0$ on the interval $(-\infty, 1) \cup(3, \infty)$
- $\lim _{x \rightarrow-\infty} h(x)=\infty$
- $\lim _{x \rightarrow \infty} h(x)=0$

10. (4 points)

The graph of a function $g(x)$ is shown below.

Sketch the graph of its derivative $g^{\prime}(x)$ on the axes below.

Extra Credit (5 points) A portion of the graph of the function $f(x)=-3+x / 2+x^{3}$ is shown below. $f(x)$

a. Suppose Newton's method is used to find an approximate solution to $f(x)=0$ from an initial guess of $x_{1}=1$. Sketch on the graph how the next approximation x_{2} will be found, labeling its location on the x-axis.
b. If your starting guess is $x_{1}=1$, compute x_{2}.

