Calculus I: Final Exam

Name: _____

Section: □ 9:15 (Mohamed Nouh) □ 11:45 (James Gossell) □ Online (Leah Berman)

Rules:

- Partial credit will be awarded, but you must show your work.
- You may have a single handwritten $3'' \times 5''$ notecard, both sides.
- Calculators are **not allowed**.
- Place a box around your FINAL ANSWER to each question where appropriate.
- Turn off anything that might go beep during the exam.
- You have two hours to complete the exam.

Problem	Possible	Score
1	12	
2	10	
3	10	
4	12	
5	11	
6	10	
7	8	
8	12	
9	11	
10	4	
Extra Credit	(5)	
Total	100	

1

Spring 2024

Math F251X

1. (12 points)

Compute the following **integrals**. Give the most general answer, and show your work. Clearly indicate any substitutions you use in such a way that someone else can follow your work.

a.
$$\int \sqrt[4]{x^3} + \sqrt{2} - \sin(x) \, dx$$

b.
$$\int \frac{2x\ln(x^2+1)}{x^2+1} dx$$

$$c. \quad \int \frac{x^2}{\sqrt{1+x^3}} \, dx$$

2. (10 points)

Consider the graph of the function f(x) shown below:

a. Compute $\int_{1}^{9} f(x) dx$. Show some work or say something about what you computed.

- **b.** Let $F(t) = \int_{-4}^{t} f(x) dx$. On the interval [-4, 12], where is F(t) increasing? Where is F(t) decreasing? Write your answers in interval notation.
 - *F*(*t*) is increasing on the interval
 - *F*(*t*) is **decreasing** on the interval _____
- **c**. Determine f'(1) = _____
- d. Determine

3. (10 points)

A portion of the implicitly defined curve

$$y^2 = x^3 - 3x + 3$$

is shown in the graph.

a. Use implicit differentiation to find the **slope** of the tangent line to the curve at the point (-2, 1) (shown as the black dot). Please give an exact answer.

- **b**. Write the equation of the tangent line to the curve at the point (-2, 1), which is shown with a black dot on the curve. Clearly draw and label the tangent line on the graph.
- c. Find the coordinates (as ordered pairs) of all points on the curve where the tangent line is horizontal.

4. (12 points)

A surveillance drone rises from the ground. Its upward velocity is can be modelled by the function

$$v(t) = 1 - e^{-t}$$

meters per second at the instant that it is *t* seconds into its flight.

a. Compute v(0). Write a complete sentence explaining the meaning of v(0) in the context of the problem. Include units in your answer.

b. Compute $\int_0^5 v(t)dt$ and write a sentence to interpret its meaning in the context of the problem. Include units in your answer.

c. Find v'(t). Compute v'(0) and write a sentence to interpret its meaning in the context of the problem. Include units in your answer.

5. (11 points)

We want to answer the following question: which points on the graph of $y = 9 - x^2$ are **closest** to the point (0, 4)?

It is a mathematical fact that to minimize the distance between two points, it is sufficient to minimize the **square** of the distance. The function

$$D(x) = (x - 0)^{2} + ((9 - x^{2}) - 4)^{2} = x^{4} - 9x^{2} + 25$$

gives the square of the distance between the point Q = (0, 4) and an arbitrary point $P = (x, y) = (x, 9 - x^2)$ on the graph.

Determine the *x*-value(s) which **minimize** D(x) in order to find the point(s) on the graph that are closest to the point (0,4). Use Calculus to justify your answer.

The closest point(s) is/are : _____

⁽your answer should be (an) ordered pair(s)!)

6. (10 points)

A giant spherical snowball is melting. Its volume is decreasing at a rate of 1 cubic meter per hour. How fast is the radius of the snowball decreasing when its radius is 2 meters? (The volume V of a sphere of radius r is given by $V = \frac{4}{3}\pi r^3$.)

Write your answer in a complete sentence using units.

7. (8 points)

Compute the following **limits**. Show your work clearly. Make sure you use **limit notation** where required; an answer that does not use proper notation will not receive full credit. Use = to show things are equal. If you use L'Hôpital's rule, write $\stackrel{H}{=}$ or $\stackrel{L'H}{=}$ to indicate where you are applying it.

$$a. \lim_{x \to \infty} \frac{\ln(2x^4 + 3)}{x^4}$$

b.
$$\lim_{x \to 1} \frac{\sqrt{2-x}-x}{x-1}$$

8. (12 points)

Compute the following **derivatives**. Show your work. You do NOT need to simplify your answer. Your answer should start f'(x), $\frac{df}{dx}$ etc.

a.
$$f(\theta) = \ln(\sec \theta + \cot \theta)$$

b.
$$g(x) = \frac{\sqrt{3}}{4} + \frac{\sqrt{x}}{5} - \frac{5}{\sqrt{x}}$$

$$\mathbf{c.} \ h(x) = \frac{e^{3x}}{\sin(x)}$$

9. (11 points)

Sketch a graph of a function h(x) that satisfies all of the following properties. After drawing the graph:

- Label on the graph the following things, if they exist, by drawing a point on the graph and labeling: any local maximums by writing LOCAL MAX, local minimums by writing LOCAL MIN, inflection points by writing IP
- **Draw** any horizontal and vertical asymptotes with dashed lines and **label** them with their equation.
- Mark any important *x*-values and *y*-values (with numbers) on the *x* and *y*-axes.

Properties:

- The domain of h(x) is $(-\infty, \infty)$
- h(0) = 0 and h(2) = 2
- h'(x) < 0 on the interval $(-\infty, 0) \cup (2, \infty)$
- *h*′(*x*) > 0 on the interval (0, 2)

- h''(x) < 0 on the interval (1, 3)
- h''(x) > 0 on the interval $(-\infty, 1) \cup (3, \infty)$
- $\lim_{x \to -\infty} h(x) = \infty$
- $\lim_{x \to \infty} h(x) = 0$

10. (4 points)

The graph of a function g(x) is shown below.

Sketch the graph of its derivative g'(x) on the axes below.

Extra Credit (5 points) A portion of the graph of the function $f(x) = -3 + x/2 + x^3$ is shown below.

- a. Suppose Newton's method is used to find an approximate solution to f(x) = 0 from an initial guess of $x_1 = 1$. Sketch on the graph how the next approximation x_2 will be found, labeling its location on the *x*-axis.
- b. If your starting guess is $x_1 = 1$, **compute** x_2 .