Final Review - Chapter 2
 (Limits, + Continuity + L'Hospital's Rule)

Example 1: Sketch the graph of $f(x)=\left\{\begin{array}{l}\sqrt{-x}, \text { if } x<0 \\ x^{2} \text { if } 0<x \leq 2 \\ x-5, \text { if } x>2\end{array}\right.$ and give the interval on which f is continuous. At what numbers is f continuous from the right, left or neither?

a) $\lim _{x \rightarrow 0^{-}} f(x)=\boldsymbol{O}$
b) $\lim _{x \rightarrow 0^{+}} f(x)=\mathbf{O}$
c) $\lim _{x \rightarrow 0} f(x)=\mathbf{O}$
d) $\lim _{x \rightarrow 2^{-}} f(x)=4$
e) $\lim _{x \rightarrow 2^{+}} f(x)=-3$
f) $\lim _{x \rightarrow 2} f(x)$ D NE

- Find limits using factoring, algebra, conjugates.

Example 2: Find the following limits:
a) $\lim _{x \rightarrow-1^{-}} f(x)$ for $f(x)= \begin{cases}x^{2}-1 & \text { for } x<1 \\ 2 x+3 & \text { for } x \geq 1\end{cases}$
b) $\lim _{x \rightarrow 0^{+}} f(x)$ where $f(x)= \begin{cases}x^{2}+4 & \text { for } x>0 \\ 2 \cos (x)+5 & \text { for } x \leq 0\end{cases}$
$\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} x^{2}-1=(-1)^{2}-1=1-1=0$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2}+4=4$

Example 3: Find the following limits:
a) $\lim _{x \rightarrow 1} e^{x-1} \sin \left(\frac{\pi x}{2}\right)$
b) $\begin{aligned} \lim _{x \rightarrow 0} \frac{5 x^{2}}{1-\cos x} \stackrel{H}{=} & \lim _{x \rightarrow 0} \frac{10 x}{\sin x} \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{10}{\cos x}=10 \\ & \begin{array}{l}\uparrow \\ \text { form } \frac{0}{0}\end{array} \quad \text { form } \frac{0}{0}\end{aligned}$
$=1 \cdot 1=1$
$2\left(x^{2}-9\right)$
Example 4: Find he following limits:
a) $\lim _{x \rightarrow 3} \frac{2 x^{2}-18}{x^{2}+x-12}$
$=\lim _{x \rightarrow 3} \frac{2(x-3)(x+3)}{(x-3)(x+4)}$
$=\lim _{x \rightarrow 3} \frac{2(x+3)}{x+4}=\frac{2 \cdot 6}{7}$
$=\frac{12}{7}$
b) $\lim _{h \rightarrow 0} \frac{(4+h)^{3}-64}{h}=\lim _{h \rightarrow 0} \frac{64+48 h+12 h^{2}+h^{3}-64}{h}$

$$
=\lim _{h \rightarrow 0} \frac{48 h+12 h^{2}+h^{3}}{h}=\lim _{h \rightarrow 0} 48+12 h+h^{2}=48
$$

Example 5: Find the following limits:

$$
\begin{aligned}
& \text { a) } \lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}=\lim _{x \rightarrow-4} \frac{\frac{x+4}{4 x}}{4+x} \\
& =\lim _{x \rightarrow-4} \frac{1}{4 x}=\frac{-1}{16}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x^{2}+2 x-8} \cdot \frac{\sqrt{x^{2}+9}+5}{\sqrt{x^{2}+9}+5} \\
& =\lim _{x \rightarrow-4} \frac{x^{2}+9-25}{(x+4)(x-2)\left(\sqrt{x^{2}+9}+5\right)} \\
& =\lim _{x \rightarrow-4} \frac{(x+4)(x-4)}{(x+4)(x-2)\left(\sqrt{x^{2}+9}+5\right)}=\frac{-8}{-6(10)}=\frac{2}{15}
\end{aligned}
$$

- Find infinite limits. As in the limit is equal to plus or minus infinity or has an infinite discontinuity.
- Find limits at infinity. This means x goes to plus or minus infinity.

Example 6: Find the following limits:

$$
\begin{array}{ll}
\text { a) } \lim _{x \rightarrow 5^{-}} \frac{e^{x}}{(x-5)^{3}}=-\infty & \text { b) } \lim _{x \rightarrow \pi^{-}} \cot x=\lim _{x \rightarrow \pi^{-}} \frac{\cos x}{\sin x}=-\infty \\
\text { as } x \rightarrow 5^{-}, x-5 \rightarrow 0^{-} \\
\text {and } \mathbf{e}^{x} \rightarrow \mathbf{e}^{5}>0
\end{array}
$$

Example 7: Find the following limits.
a) $\lim _{x \rightarrow \infty} \frac{4 x^{4}+5}{\left(x^{2}-2\right)\left(2 x^{2}-1\right)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{4 x^{4}+5}{2 x^{4}-5 x^{2}+2} \cdot \frac{1 / x^{4}}{1 / x^{4}} \\
& =\lim _{x \rightarrow \infty} \frac{4+5 / x^{4}}{2-5 / x^{2}+2 / x^{4}} \\
& =\frac{4+0}{2-0+0}=2
\end{aligned}
$$

Example 8: Find the following limits.

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow \infty} \frac{x+x^{3}+x^{5}}{1-x^{2}+x^{4}} \cdot \frac{1 / x^{4}}{1 / x^{4}} \\
& =\lim _{x \rightarrow \infty} \frac{1 / x^{3}+1 / x+x}{1 / x^{4}-1 / x^{2}+1}=\infty
\end{aligned}
$$

b/c $x \rightarrow \infty$, and the denominator approaches 1 .

Example 9: Find the following limits.

$$
\begin{aligned}
& \text { a) } \lim _{x \rightarrow \infty} \sec \left(\frac{x^{2}}{x^{3}-2}\right) \\
& =\sec \left(\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{3}-2}\right) \\
& =\sec (0)=1
\end{aligned}
$$

replace x b/-x

$$
\begin{aligned}
& \text { b) } \lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}=\lim _{x \rightarrow+\infty} \frac{\sqrt{9(-x)^{6}-(-x)}}{(-x)^{3}+1} \\
&= \lim _{x \rightarrow+\infty} \frac{\sqrt{9 x^{6}+x}}{-x^{3}+1} \cdot \frac{1 / x^{3}}{1 / x^{3}} \quad \begin{array}{l}
\text { Don' forget that } \\
x^{3}=\sqrt{x^{6}} \text { if } x \geqslant 0
\end{array} \\
&=\lim _{x \rightarrow \infty} \frac{\sqrt{9+1 / x^{5}}}{-1+1 / x^{3}}=\frac{\sqrt{9+0}}{-1+0}=-3
\end{aligned}
$$

b)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{3}-2 x+3}{5-2 x^{4}} \cdot \frac{1 / x^{4}}{1 / x^{4}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}-\frac{2}{x^{3}}+\frac{3}{x^{4}}}{\frac{5}{x^{4}}-2} \\
& =\frac{0-0+0}{0-2}=\frac{0}{-2}=0
\end{aligned}
$$

$$
\text { b) } \lim _{x \rightarrow 0^{+}} \arctan (1 / x)=\pi / 2
$$

Reason:

$$
\text { As } x \rightarrow 0^{+}, \frac{1}{x} \text { approaches }
$$

positive infinity. As $z \rightarrow \infty$, $\arctan z$ approach $\pi / 2$.

Example 10: Find the following limits using l'Hospital's rule. I won't tell you explicitly to do this on the exam. You will have to know when you can/ cannot apply this rule.

form $\frac{0}{0}$

- Know and apply the defintion of continuity.
- Determine where a function is discontinuous and why.
- Determine the value of a constant that makes a function continuous.

Definition of Continuity A function f is continuous at c if the following three conditions are met: \qquad
2. $f(c)$ exists
3. $\lim _{x \rightarrow c} f(x)=f(c)$

Example 11: Find all points of discontinuity of $h(x)=\frac{x-4}{x^{2}-x-12}$ and explain why the points are discontinuous and state if they are removable or non-removable.

$$
x^{2}-x-12=(x-4)(x+3)
$$

Answer:
So $h(x)$ fails to exist at $x=-3$ and $x=4$.

$$
h \text { is discontinuous at }
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 4} h(x)=\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(x+3)}=\lim _{x \rightarrow 4} \frac{1}{x+3}=\frac{1}{7} \downarrow \\
& \lim _{x \rightarrow-3^{+}} \frac{1}{x+3}=+\infty ; \lim _{x \rightarrow-3^{-}} \frac{1}{x-3}=-\infty
\end{aligned}
$$

$$
x=-3 \text { and } x=4
$$

not removable. removals

Example 12: Find the numbers, if any, at which f is discontinuous. At which of these numbers is f continuous from the right, from the left, or neither?
$f(x)= \begin{cases}x^{2}+1 & \text { if } x<0 \\ e^{x} & \text { if } 0 \leq x \leq 2 \\ 6 x-7 & \text { if } x>2\end{cases}$
$x \rightarrow 0$
So $\lim _{x \rightarrow 2} f(x)$ does not exist.
Example 13: Determine the value of b such that the function $f(x)=\left\{\begin{array}{ll}x^{2}+b x & x \leq 1 \\ 3 \cos (\pi x) & x>1\end{array}\right.$ is continuous on the entire real line.
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} x^{2}+b x=1+b$
$x \rightarrow 1^{-} \quad x \rightarrow 1^{-}$
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1+} 3 \cos (\pi x)=3 \cos (\pi)=-3$
$x \rightarrow 1^{+} \quad x \rightarrow 1^{+}$
For continuity at $x=1$, we need $1+b=-3$. So $b=-4$
Example 14: Determine the values of a and b that will make the function $f(x)= \begin{cases}x+1 & \text { if } 1<x<3 \\ x^{2}+a x+b & \text { if }|x-2| \geq 1\end{cases}$ continuous on the entire real number line.

So $a+b=1$
$x-2 \geqslant 1$ or $x-2 \leqslant-1$
$x \geqslant 3$ or $x \leq 1$
at $x=3$, we need: $\quad 3+1=3^{2}+3 a+b$.

$$
\text { So } 3 a+b=-5
$$

Now:

