# Final Review - Chapter 2 <br> (Limits, + Continuity + L'Hospital's Rule) 

Example 1: Sketch the graph of $f(x)=\left\{\begin{array}{l}\sqrt{-x}, \text { if } x<0 \\ x^{2} \text { if } 0<x \leq 2 \\ x-5, \text { if } x>2\end{array}\right.$ and give the interval on which $f$ is continuous. At what numbers is $f$ continuous from the right, left or neither?

a) $\lim _{x \rightarrow 0^{-}} f(x)$
b) $\lim _{x \rightarrow 0^{+}} f(x)$
c) $\lim _{x \rightarrow 0} f(x)$
d) $\lim _{x \rightarrow 2^{-}} f(x)$
e) $\lim _{x \rightarrow 2^{+}} f(x)$
f) $\lim _{x \rightarrow 2} f(x)$

- Find limits using factoring, algebra, conjugates.

Example 2: Find the following limits:
a) $\lim _{x \rightarrow-1^{-}} f(x)$ for $f(x)= \begin{cases}x^{2}-1 & \text { for } x<1 \\ 2 x+3 & \text { for } x \geq 1\end{cases}$
b) $\lim _{x \rightarrow 0^{+}} f(x)$ where $f(x)= \begin{cases}x^{2}+4 & \text { for } x>0 \\ 2 \cos (x)+5 & \text { for } x \leq 0\end{cases}$

Example 3: Find the following limits:
a) $\lim _{x \rightarrow 1} e^{x-1} \sin \left(\frac{\pi x}{2}\right)$
b) $\lim _{x \rightarrow 0} \frac{5 x^{2}}{1-\cos x}$

Example 4: Find the following limits:
a) $\lim _{x \rightarrow 3} \frac{2 x^{2}-18}{x^{2}+x-12}$
b) $\lim _{h \rightarrow 0} \frac{(4+h)^{3}-64}{h}$

Example 5: Find the following limits:
a) $\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}$
b) $\lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x^{2}+2 x-8}$

- Find infinite limits. As in the limit is equal to plus or minus infinity or has an infinite discontinuity.
- Find limits at infinity. This means $x$ goes to plus or minus infinity.

Example 6: Find the following limits:
a) $\lim _{x \rightarrow 5^{-}} \frac{e^{x}}{(x-5)^{3}}$
b) $\lim _{x \rightarrow \pi^{-}} \cot x$

Example 7: Find the following limits.
a) $\lim _{x \rightarrow \infty} \frac{4 x^{4}+5}{\left(x^{2}-2\right)\left(2 x^{2}-1\right)}$
b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}$

Example 8: Find the following limits.
a) $\lim _{x \rightarrow \infty} \frac{x+x^{3}+x^{5}}{1-x^{2}+x^{4}}$
b) $\lim _{x \rightarrow \infty} \frac{x^{3}-2 x+3}{5-2 x^{2}}$

Example 9: Find the following limits.
a) $\lim _{x \rightarrow \infty} \sec \left(\frac{x^{2}}{x^{3}-2}\right)$
b) $\lim _{x \rightarrow 0^{+}} \arctan (1 / x)$

Example 10: Find the following limits using l'Hospital's rule. I won't tell you explicitly to do this on the exam. You will have to know when you can/ cannot apply this rule.
a) $\lim _{x \rightarrow \infty} \frac{1-e^{x}}{1+2 e^{x}}$
b) $\lim _{h \rightarrow 0} \frac{\sin h}{h \cos h}$

- Know and apply the defintion of continuity.
- Determine where a function is discontinuous and why.
- Determine the value of a constant that makes a function continuous.

Definition of Continuity A function $f$ is continuous at $c$ if the following three conditions are met:

1. $\qquad$
2. $\qquad$
3. $\qquad$

Example 11: Find all points of discontinuity of $h(x)=\frac{x-4}{x^{2}-x-12}$ and explain why the points are discontinuous and state if they are removable or non-removable.

Example 12: Find the numbers, if any, at which $f$ is discontinuous. At which of these numbers is $f$ continuous from the right, from the left, or neither?

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<0 \\ e^{x} & \text { if } 0 \leq x \leq 2 \\ 6 x-7 & \text { if } x>2\end{cases}
$$

Example 13: Determine the value of $b$ such that the function $f(x)=\left\{\begin{array}{ll}x^{2}+b x & x \leq 1 \\ 3 \cos (\pi x) & x>1\end{array}\right.$ is continuous on the entire real line.

Example 14: Determine the values of $a$ and $b$ that will make the function $f(x)= \begin{cases}x+1 & \text { if } 1<x<3 \\ x^{2}+a x+b & \text { if }|x-2| \geq 1\end{cases}$ continuous on the entire real number line.

