Final Review - Chapter 3
 (Derivative Rules)

- Find derivatives using the limit defintion.
- Know how to apply the sum, difference, product, quotient, and chain rules.
- Know when to use logarithmic differentiation to find a derivative.

Example 1: Find the derivative of $f(x)=9+x-2 x^{2}$ using the definition of the derivative. Then find an equation of the tangent line at the point $(2,3)$.

Example 2: Calculate y^{\prime}.
a) $y=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt[5]{x^{3}}}$
b) $y=\frac{\tan x}{1+\cos x}$

Example 3: Calculate y^{\prime}.
a) $y=x \cos ^{-1} x$
b) $y=(\arcsin (2 x))^{2}$

Example 4: Calculate y^{\prime}.
a) $y=e^{x \sec x}$
b) $y=10^{\tan (\pi \theta)}$

Example 6: Find $\frac{d y}{d x}$.
a) $y=\arcsin \left(e^{2 x}\right)$
b) $y=\int_{x^{2}}^{3} \frac{t+4}{\cos t} d t$

- Find derivatives using implicit differentiation.

Example 5: Given $x e^{y}=y \sin x$ find y^{\prime}.

Example 6: Given $y-x \cos y=x^{2} y$ find y^{\prime}

Example 7: Find the derivative of $h(x)=\ln \left(\frac{x^{2}-4}{2 x+5}\right)$

Example 8: Find the derivative of $y=(\cos x)^{x}$

Example 9: Find the derivative of $y=(x+4)^{\tan (2 x)}$

- Solve related rates problems.

Example 10: A plane flying horizontally at an altidue of 1 mile and a speed of $500 \mathrm{mi} / \mathrm{h}$ passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 2 miles away from the station.

Example 11: The sides of an equilaterial triangle are increasing at a rate of $10 \mathrm{~cm} / \mathrm{min}$. At what rate is the area of the triangle increasing when the sides are 30 cm long? $\left.\left(A=\frac{\sqrt{3}}{4} \text { (side }\right)^{2}\right)$

Example 12: The altitude of a triangle is increasing at a rate of $1 \mathrm{~cm} / \mathrm{min}$ while the area of the triangle is increasing at a rate of $2 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is $100 \mathrm{~cm}^{2}$?

