- Find derivatives using the limit defintion.
- Know how to apply the sum, difference, product, quotient, and chain rules.
- Know when to use logarithmic differentiation to find a derivative.

Example 1: Find the derivative of $f(x) = 9 + x - 2x^2$ using the definition of the derivative. Then find an equation of the tangent line at the point (2, 3).

Example 2: Calculate *y*'.

a)
$$y = \frac{1}{\sqrt{x}} - \frac{1}{\sqrt[5]{x^3}}$$
 b) $y = \frac{\tan x}{1 + \cos x}$

Example 3: Calculate y'.

a)
$$y = x \cos^{-1} x$$
 b) $y = (\arcsin(2x))^2$

Example 4: Calculate *y*'.

a)
$$y = e^{x \sec x}$$
 b) $y = 10^{\tan(\pi \theta)}$

Example 6: Find $\frac{dy}{dx}$.

a)
$$y = \arcsin(e^{2x})$$
 b) $y = \int_{x^2}^{3} \frac{t+4}{\cos t} dt$

• Find derivatives using implicit differentiation.

Example 5: Given $xe^y = y \sin x$ find y'.

Example 6: Given $y - x \cos y = x^2 y$ find y'

Example 7: Find the derivative of $h(x) = \ln\left(\frac{x^2 - 4}{2x + 5}\right)$

Example 8: Find the derivative of $y = (\cos x)^x$

Example 9: Find the derivative of $y = (x + 4)^{\tan(2x)}$

• Solve related rates problems.

Example 10: A plane flying horizontally at an altidue of 1 mile and a speed of 500 mi/h passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 2 miles away from the station.

Example 11: The sides of an equilaterial triangle are increasing at a rate of 10 cm/min. At what rate is the area of the triangle increasing when the sides are 30 cm long? ($A = \frac{\sqrt{3}}{4}(\text{side})^2$)

Example 12: The altitude of a triangle is increasing at a rate of 1 cm/min while the area of the triangle is increasing at a rate of $2 \text{ cm}^2/\text{min}$. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is 100 cm²?