Final Review - Chapter 5
 (Antiderivatives and Applications of Anti-Differentiation)

Example 1: Find the most general antiderivative of the function.
a) $g(x)=\frac{1}{x}+\frac{1}{x^{2}+1}$
b) $f(x)=\frac{x^{2}+\sqrt{x}}{x}$

Example 2: Given $f^{\prime \prime}(x)=5 x^{3}+6 x^{2}+2, f(0)=3, f(1)=-2$, find $f(x)$.

Example 3: A particle is moving with $v(t)=2 t-1 /\left(1+t^{2}\right)$ and $s(0)=1$. Fin the position of the particle.

Example 4: Estimate the area under the curve $y=x^{2}+2$ on the interval $[0,8]$ using 4 sub-intervals and the method given below.
a) left endpoints.
b) midpoints.

Example 5: Evaluate the following definite integrals.
a) $\int_{0}^{\pi / 4} \frac{\sec ^{2} t}{\tan t+1} d t$
b) $\int_{1}^{4} \frac{x-2}{\sqrt{x}} d x$

Example 6: Find the most general anti-derivaatives.
a) $\int\left(\sec x \tan x+\frac{2}{\sqrt{1-x^{2}}}\right) d x$
b) $\int \frac{x}{(x-2)^{3}} d x$

Example 7: Find the most general anti-derivatives.
a) $\int \frac{\sin (1 / x)}{x^{2}} d x$
b) $\int \frac{\cos ^{-1} x}{\sqrt{1-x^{2}}} d x$

Example 8: Find the derivative of the following functions.
a) $F(x)=\int_{2}^{x^{3}} \sqrt{1+t^{4}} d t$
b) $H(x)=\int_{e^{x}}^{x^{2}} \sec t d t$

Example 9: A particle moves along a line with velocity function $v(t)=2 \sin t$, where v is measured in meters per second.
(a) Find the displacement over the time interval $[0,6]$
(b) Find the total distance traveled during the time interval $[0,6]$

Example 10: A bacteria population is 4000 at time $t=0$ and its rate of growth is 1000×2^{t} bacteria per hour after t hours. What is the population after one hour?

