Recitation 10: 4-2 How Derivatives Affect the Shape of a Graph (part 2)

WARM-UP QUESTIONS:

1. Given a function $y=f(x)$ how do you...
(a) determine where f is increasing/decreasing?

- find f^{\prime}.
- In the domain of $f(x)$, where $f^{\prime}>0$, fis increasing; where $f^{\prime}<0, f$ is decreasing.
(b) use f^{\prime} to identify any local maximum and minimum values?
- find critical points of f.
- check the sign-change of f^{\prime}.
- If f^{\prime} changes $+t_{0}-, \cap, a^{\alpha_{\text {max }} \text { local }}$ If f^{\prime} changes $-t_{0}+, \cup a^{a^{\text {local }} \text { min. }}$
(c) determine where f is concave up or concavedown?
- find $f^{\prime \prime}$
- In the domain of f, where $f^{\prime \prime}>0$, f is concave up; where $f^{\prime \prime}<0, f$ is concave down.
(d) find inflection points?
Find $d x$ values in dome in of f where the sign of $f^{\prime \prime}$ changes. To find the point you need to find the y value, too.

2. Let $f(x)=x-2 \cos x$ be restricted to the interval $I=[0,4 \pi]$.
(a) Determine intervals of increase and decrease of f on I.

$$
f^{\prime}(x)=1+2 \sin x=0
$$

we need $\sin x=-1 / 2$.
Increases on $\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right) \cup\left(\frac{13 \pi}{6}, \frac{17 \pi}{6}\right)$
answer

loc. max. at $x=5 \pi / 6, \frac{17 \pi}{6} \quad$ local maximum values: $\frac{5 \pi}{6}+\sqrt{3}$ and $\frac{17 \pi}{3}+\sqrt{3}$
loo min at $x=\frac{\pi}{6}, \frac{13 \pi}{6}, 0,4 \pi \quad$ local min. values: $\frac{\pi}{6}-\sqrt{3}, \frac{13 \pi}{6}-\sqrt{3},-2,-2$
(c) Graph $f(x)$ on your calculator to check your answer is correct.

Motivating Examples:

Assume $f(x)$ is differentiable (and therefore continuous) for all real numbers. On the axes below, sketch a graph of $f(x)$ with the given property.
(i) $f(x)$ has a local maximum at $x=c$

(ii) $f(x)$ has a local minimum at $x=c$

QUESTION 1: What can you say about $f^{\prime}(c)$ in picture (i)? picture (ii)? Is it the same for your neighbors pictures $\%$ QUESTION 2: What can you say about $f^{\prime \prime}(c)$ in picture (i)? picture (ii)? Is it the same for your $f^{\prime \prime}$ is positive in (i)
neighbors pictures?

$$
f^{\prime \prime} \text { is negative in (ii) }
$$

The Second Derivative Test: Suppose $f^{\prime \prime}$ is continuous near c. a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c) \geq 0$, then f has a local minimum at c.
b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

$\Downarrow \operatorname{coup}$

〇ccolown

QUESTION 3: What happens if $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$? Can you draw any conclusions about whether f has a local max or min? Why"
No.

Example: $g(x)=x^{4}$

So $g^{\prime}(0)=g^{\prime \prime}(0)=0$.
f has a min at $x=0$:

Example 2: Find the local maximum and minimum values of the functions. Choose either the first or second derivative test. Explain why you made the choice that you did.
(a) $f(x)=x^{4}-4 x+3$
(b) $f(x)=\frac{x}{x^{2}+2}$
$f^{\prime}(x)=4 x^{3}-4=0$ when $x=1$
$f^{\prime \prime}(x)=12 x$
$f^{\prime \prime}(1)=12 \cdot 1=12>0 \quad$
So fhasa local minimum of $f(1)=1-4+3=0$ at $x=1$
and no maximum.
Why choose $2^{\text {nd }}$ der. Hst? $f^{\prime \prime}$ is Simple tofind.

Example 3: Sketch a possible graph of a function f that satisfies the following conditions:
(i) $f(0)=0, f(2)=3, f(4)=6, f^{\prime}(0)=f^{\prime}(4)=0$.
(ii) $f^{\prime}(x)>0$ for $0<x<4$ and $f^{\prime}(x)<0$ for $x<0$ and for $x>4$.
(iii) $f^{\prime \prime}(x)>0$ for $x<2$ and $f^{\prime \prime}(x)<0$ for $x>2$.

$f^{\prime} \ldots+i+$
$f^{\prime \prime}++++++\vdots$
\vdots
\vdots
\downarrow cup $\quad \uparrow$ cup $\quad \uparrow$ ccdown $\downarrow \downarrow$ ccdown

Example 4: Given the function $f(x)=\ln \left(x^{2}+4\right)$ find the following.
(a) Find the intervals of increase or decrease.

$$
f^{\prime}(x)=\frac{1}{x^{2}+4} \cdot 2 x=\frac{2 x}{x^{2}+4}
$$

answer
f is increasing on $(0, \infty)$
f is decreasing on $(-\infty, 0)$
(b) Find the local maximum and minimum values.
local min at $x=0$. min value: $y=f(0)=\ln 4$
(c) Find the intervals of concavity and inflection points.

$$
f^{\prime \prime}(x)=\frac{\left(x^{2}+4\right)(2)-(2 x)(2 x)}{\left(x^{2}+4\right)^{2}}=\frac{2 x^{2}+8-4 x^{2}}{\left(x^{2}+4\right)^{2}}=\frac{8-2 x^{2}}{\left(x^{2}+4\right)^{2}}=\frac{2(2-x)(2+x)}{\left(x^{2}+4\right)^{2}}
$$

$$
f^{\prime \prime}=0 \text { when } x=2,-2
$$

answer:
f is concave up on $(-2,2)$ and concave down on $(-\infty,-2) \cup(2, \infty)$.

Example 5: Given the function $f(x)=5 x^{2 / 3}-2 x^{5 / 3}$, find the following.
(a) Find the intervals of increase or decrease.

$$
f^{\prime}(x)=\frac{10}{3} x^{-1 / 3}-\frac{10}{3} x^{2 / 3}=\frac{10}{3}\left(\frac{1-x}{x^{1 / 3}}\right) \quad \text { ans: }
$$

critical pts: $x=0, x=1$
f is increasing on $(0,1)$

Interval	$(-\infty, 0)$	$(0,1)$	$(1, \infty)$
Sign of f^{\prime}	-	+	-
iner/decr?	\downarrow	\uparrow	\downarrow

Just FYI. Bad choice here. Easier totake derivative of
(b) Find the local maximum and minimum values.
local minimum at $x=0$. Minimum value is $f(0)=0 \quad f^{\prime}=\frac{10}{3}\left(x^{\frac{-1}{3}}-x^{\frac{2}{3}}\right)$. local maximum at $x=1$. maximum value is $f(1)=3$
(c) Find the intervals of concavity and inflection points.

$$
f^{\prime \prime}(x)=\frac{10}{3} \cdot\left(\frac{x^{1 / 3}(-1)-(1-x) \cdot \frac{1}{3} x^{-2 / 3}}{x^{2 / 3}}\right) \cdot \frac{x^{2 / 3}}{x^{2 / 3}}=\frac{10}{3}\left(\frac{-x-(1-x) \frac{1}{3}}{x^{4 / 3}}\right)=\frac{10}{9}\left(\frac{-3 x-1+x}{x^{4 / 3}}\right)
$$

$$
=-\frac{10}{9}\left(\frac{1+2 x}{x^{4 / 3}}\right)
$$

ANSWER:
$f^{\prime \prime}=0$ when $x=-\frac{1}{2}$
f is concave up on $\left(-\infty, \frac{-1}{2}\right)$
$f^{\prime \prime}$ undefined when $x=0$ and concave down on $\left(-\frac{1}{2}, \infty\right)$

(d) Use the information to sketch the graph.

Example 6: Suppose the function $f(t)=t^{3}-12 t+2$ describes the motion of a particle along the t-axis for $t \geq 0$. Find $f^{\prime}(2)$ and $f^{\prime \prime}(2)$. Is the velocity of the particle increasing or decreasing at $t=2$?

$$
\begin{array}{ll}
f^{\prime}(t)=3 t^{2}-12 & f^{\prime}(2)=0 \\
f^{\prime \prime}(t)=6 t & f^{\prime \prime}(2)=12>0
\end{array}
$$

Explain your answer in
complete sentences.

Answer: The particle is speeding up. Since $f^{\prime \prime}$ is positive at $t=2$, we know velocity $\left(f^{\prime}\right)$ is increasing. Increasing velocity
means increasing speed, or, speeding up.

Example 7: An economist announces that the national deficit is increasing, but at a decreasing rate. Interpret this statement in terms of a function and its first and second derivatives.
picture in my head. answer: If $D(t)$ gives the national debt over
 time (or, as a function of time), the economist says $D(t)$ is increasing. So $D^{\prime}(t)$ is positive. But he/she also says D is increasing by less. So $D^{\prime}(t)$ is decreasing. So $D^{\prime \prime}(t)$ is negative.

Example 8: Let $f(t)$ be the temperature at time t where you live and suppose at time $t=3$ you feel uncomfortably cold. How do you feel about the given data in each case?
a) $f^{\prime}(3)=2, f^{\prime \prime}(3)=-4$
b) $f^{\prime}(3)=-2, f^{\prime \prime}(3)=-4$

ANS: On the up-side,
$f^{\prime}>0$ means the temperature is
getting warmer. On the
down-side, it is getting warmer
at a slower rate.

ANS: This is nothing but bad. The temperature is dropping $\left(f^{\prime}<0\right)$ and it is dropping ever more quickly $\left(f^{\prime \prime}<0\right)$.

