RECITATION: 5-3 THE FUNDAMENTAL THEOREM OF CALCULUS (PART 2)

Review: Look back at your notes from class yesterday and state both parts of the Fundamental Theorem of Calculus below.

• The Fundamental Theorem of Calculus, Part 1

• The Fundamental Theorem of Calculus, Part 2

Example 1: Using the FTC (Part ____), differentiate the following functions.

(a)
$$f(x) = \int_0^x \sqrt{1+t^2} dt$$
 (b) $g(x) = \int_{\cos x}^1 (t+\sin t) dt$

Example 2: Using the FTC (Part ____), differentiate $h(x) = \int_{\cos x}^{5x} \cos(u^2) du$

Example 3: Use the second part of the FTC to evaluate the integral, or explain why it does not exist.

(a)
$$\int_0^4 y(3+2y-y^2)dy$$
 (b) $\int_1^8 \sqrt[3]{x}dx$

Example 4: Use the second part of the FTC to evaluate the integral, or explain why it does not exist.

(a)
$$\int_{-1}^{7} x^{-3} dx$$
 (b) $\int_{\pi/4}^{5\pi/2} \sin x dx$

Example 5: Use the second part of the FTC to evaluate the integral, or explain why it does not exist.

(a)
$$\int_{1}^{3} (x-2)(x+3)dx$$
 (b) $\int_{1}^{2} \left(x+\frac{1}{x}\right)^{2} dx$

Example 6: Use the second part of the FTC to evaluate the integral, or explain why it does not exist.

(a)
$$\int_0^{\pi/4} \sec^2 x dx$$
 (b) $\int_1^8 \frac{x^2 - 1}{x} dx$

Example 7: Use the second part of the FTC to evaluate the integral, or explain why it does not exist.

(a)
$$\int_{1}^{4} \sqrt{2} dx$$
 (b) $\int_{1}^{9} \sqrt{\frac{2}{x}} dx$

Example 8: If f(1) = 10, f' is continuous, and $\int_{1}^{5} f'(x) dx = 23$, what is the value of f(5)?

Example 9: Determine whether the statement is true or false. If either case, explain why or give an example that disproves the statement.

(a)
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
 (b) $\int_{a}^{b} [f(x)g(x)] dx = \left(\int_{a}^{b} f(x) dx\right) \left(\int_{a}^{b} g(x) dx\right)$

Example 10: Determine whether the statement is true or false. If it is true, explain why or give an example that disproves the statement.

(a)
$$\int_{a}^{b} \sqrt{f(x)} dx = \sqrt{\int_{a}^{b} f(x) dx}$$
 (b) $\int_{-2}^{1} \frac{1}{x^{4}} = -\frac{3}{8}$

Example 11: Evaluate the limits by first recognizing the sum as a Reimann sum for a function.

(a)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \left(5 + \frac{2i}{n} \right)^{10}$$
 (b) $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{5}{n} \sin\left(2 + \frac{5i}{n} \right)$