Recitation: 5-3 The Fundamental Theorem of Calculus (PART 2)

Review: Look back at your notes from class yesterday and state both parts of the Fundamental Theorem of Calculus below.

- The Fundamental Theorem of Calculus, Part 1
- The Fundamental Theorem of Calculus, Part 2

Example 1: Using the FTC (Part ___), differentiate the following functions.
(a) $f(x)=\int_{0}^{x} \sqrt{1+t^{2}} d t$
(b) $g(x)=\int_{\cos x}^{1}(t+\sin t) d t$

Example 2: Using the FTC (Part ___), differentiate $h(x)=\int_{\cos x}^{5 x} \cos \left(u^{2}\right) d u$

Example 3: Use the second part of the FTC to evaluate the integral, or explain why it does not exist.
(a) $\int_{0}^{4} y\left(3+2 y-y^{2}\right) d y$
(b) $\int_{1}^{8} \sqrt[3]{x} d x$

Example 4: Use the second part of the FTC to evaluate the integral, or explain why it does not exist.
(a) $\int_{-1}^{7} x^{-3} d x$
(b) $\int_{\pi / 4}^{5 \pi / 2} \sin x d x$

Example 5: Use the second part of the FTC to evaluate the integral, or explain why it does not exist.
(a) $\int_{1}^{3}(x-2)(x+3) d x$
(b) $\int_{1}^{2}\left(x+\frac{1}{x}\right)^{2} d x$

Example 6: Use the second part of the FTC to evaluate the integral, or explain why it does not exist.
(a) $\int_{0}^{\pi / 4} \sec ^{2} x d x$
(b) $\int_{1}^{8} \frac{x^{2}-1}{x} d x$

Example 7: Use the second part of the FTC to evaluate the integral, or explain why it does not exist.
(a) $\int_{1}^{4} \sqrt{2} d x$
(b) $\int_{1}^{9} \sqrt{\frac{2}{x}} d x$

Example 8: If $f(1)=10, f^{\prime}$ is continuous, and $\int_{1}^{5} f^{\prime}(x) d x=23$, what is the value of $f(5)$?

Example 9: Determine whether the statement is true or false. If either case, explain why or give an example that disproves the statement.
(a) $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
(b) $\int_{a}^{b}[f(x) g(x)] d x=\left(\int_{a}^{b} f(x) d x\right)\left(\int_{a}^{b} g(x) d x\right)$

Example 10: Determine whether the statement is true or false. If it is true, explain why or give an example that disproves the statement.
(a) $\int_{a}^{b} \sqrt{f(x)} d x=\sqrt{\int_{a}^{b} f(x) d x}$
(b) $\int_{-2}^{1} \frac{1}{x^{4}}=-\frac{3}{8}$

Example 11: Evaluate the limits by first recognizing the sum as a Reimann sum for a function.
(a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}\left(5+\frac{2 i}{n}\right)^{10}$
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{5}{n} \sin \left(2+\frac{5 i}{n}\right)$

