Recitation: 5-4 Indefinite Integrals and the Net Change Theorem (Part 2)

Fill in the following anti-derivatives.

All the indefinite integrals you (should) already know:

- $\int x^{n} d x=\frac{1}{n+1} X^{n+1}+C$
- $\int \csc x \cot x=-\csc x+C$
- $\int \sin x d x=-\cos X+C$
- $\int \frac{1}{x} d x=\ln |\mathbf{x}|+C$
- $\int \cos x d x=\sin X+C$
- $\int e^{x} d x=\mathbf{e}^{\boldsymbol{X}}+\mathbf{C}$
- $\int \sec ^{2} x d x=\tan X+C$
- $\int a^{x} d x=\frac{1}{\ln a} a^{x}+C$
- $\int \csc ^{2} x d x=-\cot X+C$
- $\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C$
- $\int \sec x \tan x=\sec X+C$
- $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c$
- Question 1: How do you check your answers when computing integrals? For example, suppose $\int f(x) d x=$ $F(x)+C$. How do you know you are right?
Find $\frac{d}{d x}(F(x)+c)$. This should give you $f(x)$.
- Question 2: For what value of n does the reverse power rule for the antiderivative of x^{n} not apply, and what is the antiderivate of x^{n} for this value of n ?
for $n=-1$. In this case $\int x^{-1} d x=\int \frac{1}{x} d x=\ln |x|+c$
- Question 3: You have no product or quotient rule for anti-derivatives. How then do you deal with a function that is a product or a quotient?
You simplify by multiplying or dividing and manipulate the integrand (stuff inside \int sign) until you can use rules you know. Example 1: Evaluate the following integrals.
(a) $\int_{1 / 2}^{\sqrt{3} / 2} \frac{6}{\sqrt{1-t^{2}}} d t$

$$
\begin{aligned}
& =\left.6 \cdot \sin ^{-1}(t)\right|_{1 / 2} ^{\sqrt{3} / 2} \\
& =6 \sin ^{-1}(\sqrt{3} / 2)-6 \sin ^{-1}(1 / 2) \\
& =6(\pi / 3)-6(\pi / 6) \\
& =2 \pi-\pi \\
& =\pi
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
\int_{1}^{2} \frac{4+u^{2}}{u^{3}} d u & =\int_{1}^{2}\left(\frac{4}{u^{3}}+\frac{u^{2}}{u^{3}}\right) d u \\
& =\int_{1}^{2}\left(4 u^{-3}+1 / u\right) d u \\
& =\left.\left(\frac{4 u^{-2}}{-2}+\ln |u|\right)\right|_{1} ^{2} \\
& =\left.\left(-2 / u^{2}+\ln |u|\right)\right|_{1} ^{2} \\
& =(-2 / 4+\ln 2)-(-2+\ln 1) \\
& =\frac{3}{2}+\ln 2
\end{aligned}
$$

Example 2: Evalute the following integrals.
(a)

$$
\begin{aligned}
\int_{0}^{1}(3+x \sqrt[3]{x}) d x & =\int_{0}^{1}\left(3+x \cdot x^{1 / 3}\right) d x \\
& =\int_{0}^{1}\left(3+x^{4 / 3}\right) d x \\
& =\left.\left(3 x+\frac{3}{7} x^{7 / 3}\right)\right|_{0} ^{1} \\
& =3+3 / 7 \\
& =21 / 7+3 / 7 \\
& =24 / 7
\end{aligned}
$$

Example 3: Find the general indefinite integral.
(a)

$$
\begin{aligned}
\int v(3 v-2)^{2} d v & =\int v\left(9 v^{2}-12 v+4\right) d v \\
& =\int\left(9 v^{3}-12 v^{2}+4 v\right) d v \\
& =\frac{9 v^{4}}{4}-\frac{12}{3} v^{3}+\frac{4}{2} v^{2}+C \\
& =\frac{9}{4} v^{4}-4 v^{3}+2 v^{2}+c
\end{aligned}
$$

(b) $\int_{0}^{\pi / 4} \sec x(\sec x+\tan x) d x=\int_{0}^{\pi / 4}\left(\sec ^{2} x+\sec x \tan x\right) d x$ $=\left.(\tan x+\sec x)\right|_{0} ^{\pi / 4}$

$$
\begin{aligned}
& =\tan \pi / 4+\sec \pi / 4-(\tan 0+\sec 0) \\
& =\frac{\sin \pi / 4}{\cos \pi / 4}+\frac{1}{\cos \pi / 4}-\left(\frac{\sin 0}{\cos 0}+\frac{1}{\cos 0}\right) \\
& =\frac{\sqrt{2} / 2}{\sqrt{2} / 2}+\frac{1}{\sqrt{2} / 2}-(0 / 1+1 / 1) \\
& =1+2 / \sqrt{2} \sqrt{2} / \sqrt{2}-1 \\
& =\sqrt{2}
\end{aligned}
$$

(b) $\int\left(\csc ^{2} t-2 e^{t}\right) d t=-\cot t-2 e^{t}+C$

Example 4: Find the general indefinite integral.
(a) $\int\left(\sqrt{x^{3}}+\sqrt[3]{x^{2}}\right) d x=\int\left(\mathrm{X}^{3 / 2}+\mathrm{x}^{2 / 3}\right) d \mathrm{x}$
(b) $\int \sqrt{\frac{5}{x}} d x=\int \sqrt{5} x^{-1 / 2} d x$
$=\frac{2}{5} x^{5 / 2}+\frac{3}{5} x^{5 / 3}+c$

$$
\begin{aligned}
& =\sqrt{5} 2 x^{1 / 2}+c \\
& =2 \sqrt{5} \sqrt{x}+c \\
& =2 \sqrt{5 x}+c
\end{aligned}
$$

Example 5: Find the general indefinite integral.
a) $\int\left(\frac{1+2 x}{x}\right)^{2} d x=\int \frac{1+4 x+4 x^{2}}{x^{2}} d x$

$=\int\left(x^{-2}+\frac{4}{x}+4\right) d x$
$=-x^{-1}+4 \ln |x|+4 x+c$
$=-\frac{1}{x}+4 \ln |x|+4 x+C$
change into $\sec ^{2} \theta$ using trig
b) $\int\left(2+\frac{\left.\tan ^{2} \theta\right) d \theta}{\overline{2}}=\int\left(2+\sec ^{2} \theta-1\right) d \theta\right.$

Example 6: Sketch a picture of $\int_{0}^{3 \pi / 2}|\sin x| d x$. Use symmetry to find the area.

$$
\begin{aligned}
\int_{0}^{3 \pi / 2}|\sin x| d x & =3 \int_{0}^{\pi / 2} \sin x d x \\
& =\left.(-3 \cos x)\right|_{0} ^{\pi / 2} \\
& =-3 \cos (\pi / 2)+3 \cos 0 \\
& =-3(0)+3(1) \\
& =3
\end{aligned}
$$

Example 7: If oil leaks from a tank at a rate of $r(t)$ gallons per minute, what does $\int_{0}^{120} r(t) \mathrm{dt}$ represent? Give your answer with proper units.
This tells us the amount of oil that has leaked from the tank (in gallons) during the first 120 minutes.

Example 8: If x is measured in meters and $f(x)$ is measured in newtons, what are the units for $\int_{0}^{100} f(x) d x$?

- Question 4: How is displacement different from distance traveled?

Dispacement is position e start - position C end. It tells you how the particle has moved relative to its starting position.
Distance tells you how far the particle traveled.

- Question 5: Given a velocity function $v(t)$ on an interval $[a, b]$, how do you compute displacement? How do you compute distance traveled?
Displacement $=\int_{a}^{b} v(t) d t\left\{\right.$ Distance $=\int_{a}^{b}|v(t)| d t$
This will probably need to be broken into many parts.
Example 9: Suppose $v(t)=t^{2}-4$ for $0 \leq t \leq 3$ describes a particle moving along a line. Find the
(a) displacement of the particle.

$$
\begin{aligned}
\text { displacement } & =\int_{0}^{3}\left(t^{2}-4\right) d t \\
& =\left.\left(\frac{1}{3} t^{3}-4 t\right)\right|_{0} ^{3} \\
& =\frac{1}{3}(27)-12 \\
& =9-12 \\
& =-3 m
\end{aligned}
$$

The particle is 3 m to the left of where it began.
(b) distance traveled by the particle.

$$
\begin{aligned}
\text { that }(-)
\end{aligned} \begin{aligned}
& \text { trips the } \\
& \text { normal } \\
& \text { parabola up! }=\left.\left(4 t-\frac{1}{3} t^{3}\right)\right|_{0} ^{2}\left(4-t^{2}\right) d t+\left.\left(\frac{1}{3} t^{3}-4 t\right)\right|_{0} ^{3}\left(t^{2}-4\right) d t \\
&=(8-8 / 3)+(27 / 3-12)-(8 / 3-8) \\
&=16-16 / 3-3 \\
&=13(3 / 3)-16 / 3 \\
&=39 / 3-16 / 3 \\
&= 23 / 3=7.6
\end{aligned}
$$

