Recitation: 5-4 Indefinite Integrals and the Net Change Theorem (Part 2)

Fill in the following anti-derivatives.

All the indefinite integrals you (should) already know:

- $\int x^{n} d x=$
- $\int \csc x \cot x d x=$
- $\int \sin x d x=$
- $\int \frac{1}{x} d x$
- $\int \cos x d x=$
- $\int e^{x} d x$
- $\int \sec ^{2} x d x=$
- $\int a^{x} d x$
- $\int \csc ^{2} x d x=$
- $\int \frac{1}{\sqrt{1-x^{2}}} d x$
- $\int \sec x \tan x d x=$
- $\int \frac{1}{1+x^{2}} d x$
- Question 1: How do you check your answers when computing integrals? For example, suppose $\int f(x) d x=$ $F(x)+C$. How do you know you are right?
- Question 2: For what value of n does the reverse power rule for the antiderivative of x^{n} not apply, and what is the antiderivate of x^{n} for this value of n ?
- Question 3: You have no product or quotient rule for anti-derivatives. How then do you deal with a function that is a product or a quotient?

Example 1: Evaluate the following integrals.
(a) $\int_{1 / 2}^{\sqrt{3} / 2} \frac{6}{\sqrt{1-t^{2}}} d t$
(b) $\int_{1}^{2} \frac{4+u^{2}}{u^{3}} d u$

Example 2: Evalute the following integrals.
(a) $\int_{0}^{1}(3+x \sqrt[3]{x}) d x$
(b) $\int_{0}^{\pi / 4} \sec x(\sec x+\tan x) d x$

Example 3: Find the general indefinite integral.
(a) $\int v(3 v-2)^{2} d v$
(b) $\int\left(\csc ^{2} t-2 e^{t}\right) d t$

Example 4: Find the general indefinite integral.
(a) $\int\left(\sqrt{x^{3}}+\sqrt[3]{x^{2}}\right) d x$
(b) $\int \sqrt{\frac{5}{x}} d x$

Example 5: Find the general indefinite integral.
a) $\int\left(\frac{1+2 x}{x}\right)^{2} d x$
b) $\int\left(2+\tan ^{2} \theta\right) d \theta$

Example 6: Sketch a picture of $\int_{0}^{3 \pi / 2}|\sin x| d x$. Use symmetry to find the area.

Example 7: If oil leaks from a tank at a rate of $r(t)$ gallons per minute, what does $\int_{0}^{120} r(t) \mathrm{dt}$ represent? Give your answer with proper units.

Example 8: If x is measured in meters and $f(x)$ is measured in newtons, what are the units for $\int_{0}^{100} f(x) d x$?

- Question 4: How is displacement different from distance traveled?
- Question 5: Given a velocity function $v(t)$ on an interval $[a, b]$, how do you compute displacement? How do you compute distance traveled?

Example 9: Suppose $v(t)=t^{2}-4$ for $0 \leq t \leq 3$ describes a particle moving along a horizontal line where t is in seconds and $v(t)$ is in m / s. Find the
(a) displacement of the particle.
(b) distance traveled by the particle.

