RECITATION: 5-4 INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM (PART 2)

Fill in the following anti-derivatives.

- Question 1: How do you check your answers when computing integrals? For example, suppose $\int f(x)dx = F(x) + C$. How do you know you are right?
- Question 2: For what value of n does the reverse power rule for the antiderivative of x^n not apply, and what is the antiderivate of x^n for this value of n?
- **Question 3:** You have no product or quotient rule for anti-derivatives. How then do you deal with a function that is a product or a quotient?

Example 1: Evaluate the following integrals.

(a)
$$\int_{1/2}^{\sqrt{3}/2} \frac{6}{\sqrt{1-t^2}} dt$$
 (b) $\int_{1}^{2} \frac{4+u^2}{u^3} du$

Example 2: Evalute the following integrals.

(a)
$$\int_0^1 (3 + x\sqrt[3]{x}) dx$$
 (b) $\int_0^{\pi/4} \sec x (\sec x + \tan x) dx$

Example 3: Find the general indefinite integral.

(a)
$$\int v(3v-2)^2 dv$$
 (b) $\int (\csc^2 t - 2e^t) dt$

Example 4: Find the general indefinite integral.

(a)
$$\int (\sqrt{x^3} + \sqrt[3]{x^2}) dx$$
 (b) $\int \sqrt{\frac{5}{x}} dx$

Example 5: Find the general indefinite integral.

a)
$$\int \left(\frac{1+2x}{x}\right)^2 dx$$
 b) $\int (2+\tan^2\theta)d\theta$

Example 6: Sketch a picture of
$$\int_{0}^{3\pi/2} |\sin x| dx$$
. Use symmetry to find the area.

Example 7: If oil leaks from a tank at a rate of r(t) gallons per minute, what does $\int_{0}^{120} r(t) dt$ represent? Give your answer with proper units.

Example 8: If *x* is measured in meters and f(x) is measured in newtons, what are the units for $\int_0^{100} f(x) dx$?

- Question 4: How is displacement different from distance traveled?
- Question 5: Given a velocity function v(t) on an interval [a, b], how do you compute displacement? How do you compute distance traveled?

Example 9: Suppose $v(t) = t^2 - 4$ for $0 \le t \le 3$ describes a particle moving along a horizontal line where t is in seconds and v(t) is in m/s. Find the

(a) displacement of the particle.

(b) distance traveled by the particle.