## Recitation: 3-1 to 3-3 Review of Basic Differentiation

Disclaimer: On this worksheet "Simplify" is short for "simplify your answer by combining like terms, factoring out any common factors and finding a common denominator, if necessary."

State the derivatives of the following functions:

- $\frac{d}{d x} x^{n}$
- $\frac{d}{d x} \tan x$
- $\frac{d}{d x} e^{x}$
- $\frac{d}{d x} \sec x$
- $\frac{d}{d x} \sin x$
- $\frac{d}{d x} \csc x$
- $\frac{d}{d x} \cos x$
- $\frac{d}{d x} \cot x$

Suppse $f$ and $g$ are differentiable functions. State the derivatives of the following functions. What rules are these?

- $\frac{d}{d x}(f(x) g(x))$
- $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)$

Example 1: Find the derivative of the following functions.
a) $y=\frac{1}{2} x^{6}-3 x^{4}+x$
b) $f(t)=2-\frac{2}{3} t+\tan x$

Example 2: Find the derivative of the following functions.
a) $y=\pi^{2}+\ln 2+e^{5}$
b) $f(x)=\sqrt[5]{x}+4 \sqrt{x^{5}}+\cot x$

Example 3: Find the derivative of the following functions.
a) $y=5 e^{x}+3 \cos x+\sec x$
b) $y=5+2 \sin x+\sqrt{x}$

Example 4: Find the derivative of the following functions. Simplify.
a) $h(x)=\left(x^{2}+3\right)(x-5)$
b) $y=\frac{x^{3}-2 x+6}{x^{2}}$

Example 5: For what values of $x$ does the graph of $f(x)=2 x^{3}+3 x^{2}-12 x+1$ has a horizontal tangent?

Example 6: Find the derivative of the following functions. Simplify.
a) $y=\frac{x+1}{x^{3}+x-2}$
b) $f(x)=x^{3} \cos x$

Example 7: Suppose $f(2)=-3, g(2)=4, f^{\prime}(2)=-2$, and $g^{\prime}(2)=7$. Find $h^{\prime}(2)$ if $h(x)=\frac{g(x)}{2+f(x)}$.

Example 8: For what values of $x$ does $f(x)=x+2 \sin x$ have a horizontal tangent? (Hint: There are an infinite number of them. Don't give just one.)

Example 9: Differentiate $f(\theta)=\theta \cos \theta \sin \theta$

Example 10: Find an equation of the tangent line to $y=x+\tan x$ at $(\pi, \pi)$. Give your answer in slope-intercept form.

