Recitation: 3-4 to 3-4 Review of Basic Differentiation

Disclaimer: On this worksheet "Simplify" is short for "simplify your answer by combining like terms, factoring out any common factors and finding a common denominator, if necessary."

State the derivatives of the following functions:

- $\frac{d}{d x} b^{x}$
- $\frac{d}{d x} \sin ^{-1} x$
- $\frac{d}{d x} \cos ^{-1} x$
- $\frac{d}{d x} \tan ^{-1} x$

Suppse f and g are differentiable functions. State the derivatives of the following functions. What rules are these?

- $\frac{d}{d x} f(g(x))$

Example 1: Differentiate the following functions.
(a) $f(x)=e^{-x} \cos x$
(b) $f(t)=\frac{\cot t}{e^{2 t}}$

Example 2: If $f(x)=\sec x$, find $f^{\prime \prime}(\pi / 4)$.

Example 3: Differentiate the following functions.
(a) $f(x)=\cos \left(x^{2}\right)$
(b) $f(x)=\sin ^{4}(5 x)$

Example 4: Differentiate the following functions.
(a) $y=2^{x \tan x}$
(b) $f(x)=\frac{1}{(1+\tan x)^{2}}$

Example 5: Find the 50th derivative of $y=\cos (2 x)$.

Example 6: Given $x^{2}-4 x y+y^{2}=4$ find $d y / d x$.

Example 7: Find an equation of the tangent line to $\sin (x+y)=2 x-2 y$ at the point (π, π).

Example 8: Differentiate the following functions.
(a) $y=\tan ^{-1}\left(5 x^{3}\right)$
(b) $g(x)=\arccos (\sqrt{x})$

Example 9: Differentiate $y=x \sin ^{-1} x+\sqrt{1-x^{2}}$

Example 10: Differentiate the following functions. Simplify.
(a) $f(x)=-3 x^{4}+\sqrt{x^{5}}+\pi^{3}+e^{7}$
(b) $y=\frac{x^{2}-x+2}{x}$

Example 11: Find $y^{\prime \prime}$ if $x^{2}+y^{2}=1$.

Example 12: Determine where the tangent line to $y=x+2 \cos x$ is horizontal.

