Recitation 3

More on Section 2-3: Calculating Limits Using the Limit Laws

REVIEW: Complete the table below.

Limit Laws

In the rules below c is a constant, n is an integer, and $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a}(x)$ both exist.

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow \boldsymbol{a}} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\left(\lim _{x \rightarrow a} f(x)\right)-\left(\lim _{x \rightarrow a} g(x)\right)$
3. $\lim _{x \rightarrow a}[c f(x)]=C\left(\lim _{x \rightarrow a} f(x)\right)$
4. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$
5. $\lim _{x \rightarrow a}[f(x) / g(x)]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$
provided $\lim _{x \rightarrow a} g(x) \neq 0$
6. $\lim _{x \rightarrow a}(f(x))^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n} \quad$ 7. $\lim _{x \rightarrow a} c=\mathbf{C}$
7. $\lim _{x \rightarrow a} x=\boldsymbol{0}$
8. $\lim _{x \rightarrow a} x^{n}=a^{n}$
9. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{\boldsymbol{a}}$
10. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$
11. If $f(x)$ is a polynomial or rational function, then $\lim _{x \rightarrow a} f(x)=f(\boldsymbol{a})$ provided \boldsymbol{a} is in $\begin{aligned} & \text { then } \lim _{x \rightarrow a} f(x)=f(a) \text { provided } a \text { is in } \\ & \text { the domain of } f(x) .\end{aligned}$
12. The two-sided limit $\left(\lim _{x \rightarrow a} f(x)\right)$ exists if and only if both one-sided limits exist and are equal. $\left(\lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{-}} f(x)\right)$

Goals:

- Many limits are evaluated by application of the limit laws above combined with a thoughtful use of algebra. We will practice this today.
- There remain limits too slippery for straightforward algebra. For this reason, we will learn a technique for finding limits using a bounding (or "squeezing")approach.
- We will also review the greatest integer function.

Pay attention to How you write your solution! Organized? Easy to follow? Correct use of " $=$ "? Correct use of " $\lim _{x \rightarrow a}$ "?
Practice Problems (Set 1): Evaluate the following limits or explain why they do not exist.

1. $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}=\lim _{x \rightarrow-2} \frac{(-2)^{3}+2(-2)^{2}-1}{5-3(-2)}=\frac{-1}{5+6}=\frac{-1}{11}$

This is a
rational function.
I just plug in unless
the denominator is zero.
2. $\lim _{h \rightarrow 0} \frac{(h-5)^{2}-25}{h}=\lim _{h \rightarrow 0} \frac{\left(h^{2}-10 h+25\right)-25}{h}=\lim _{h \rightarrow 0} \frac{h^{2}-10 h}{h}$

The denominator is zero when $h=0$. Must do ALGEBRA prior to plugging in.

$$
=\lim _{h \rightarrow 0} \frac{h(h-10)}{h}=\lim _{h \rightarrow 0} h-10=-10
$$

why?
H's fair II haven
changed the prom.
3. (hint: rationalize the denominator.) $\lim _{t \rightarrow 0} \frac{t}{\sqrt{1+3 t}-1} \cdot \frac{\sqrt{1+3 t}+1}{\sqrt{1+3 t}+1}=\lim _{t \rightarrow 0} \frac{t(\sqrt{1+3 t}+1)}{1+3 t-1}$

$$
\begin{aligned}
=\lim _{t \rightarrow 0} \frac{t(\sqrt{1+3 t}+1)}{3 t}=\lim _{t \rightarrow 0} \frac{\sqrt{1+3 t}+1}{3} & =\lim _{t \rightarrow 0} \frac{\sqrt{1+300}+1}{3} \\
& =\frac{2}{3}
\end{aligned}
$$

4. $\lim _{z \rightarrow 1} \frac{8-z}{c-z}$, where c is a constant.

$$
\text { If } c \neq 1 \text {, then } \lim _{z \rightarrow 1} \frac{8-z}{c-z}=\lim _{z \rightarrow 1} \frac{8-1}{c-1}=\frac{7}{c-1} \text {. }
$$

If $c=1$, then the limit does not exist. (More specifically,

$$
\text { as } z \rightarrow 1^{+}, \frac{8-z}{c-z} \rightarrow+\infty . A s z \rightarrow 1^{-}, \frac{8-z}{c-z} \rightarrow-\infty \text {.) }
$$

$$
\text { 5. } \begin{aligned}
& \lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}=\lim _{x \rightarrow 3} \frac{\frac{3}{3 x}-\frac{x}{3 x}}{x-3}=\lim _{x \rightarrow 3} \frac{3-x}{3 x(x-3)}=\lim _{x \rightarrow 3} \frac{-(x-3)}{3 x(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{-1}{3 x}=\frac{-1}{9}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. } \lim _{x \rightarrow 0} \frac{\sqrt{16-x}-4}{x} \cdot \frac{\sqrt{16-x}+4}{\sqrt{16-x}+4}=\lim _{x \rightarrow 0} \frac{16-x-16}{x(\sqrt{16-x}+4)} \\
& =\lim _{x \rightarrow 0} \frac{-x}{x(\sqrt{16-x}+4)}=\lim _{x \rightarrow 0} \frac{-1}{\sqrt{16-x}+4}=\frac{-1}{8} \\
& \text { 7. } \lim _{x \rightarrow 2} \frac{x^{2}-4}{2 x^{2}-3 x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(2 x+1)}=\lim _{x \rightarrow 2} \frac{x+2}{2 x+1}=\frac{4}{5}
\end{aligned}
$$

thinking:

$$
2 \cdot 2^{2}-3 \cdot 2-2=8-8=0
$$

So $x=2$ is a root of

$$
2 x^{2}-3 x-2 \text {. So it }
$$

factors w/ a term
8. $\lim _{x \rightarrow 0} \frac{1}{x}-\frac{1}{|x|}=$ DNE because the left-hand limit and right-hand $\}$
thinking:

$$
\begin{aligned}
& \text { As } x \rightarrow 0^{+},|x|=x \text {. So } \lim _{x \rightarrow 0^{+}} \frac{1}{x}-\frac{1}{|x|}=\lim _{x \rightarrow 0^{+}} \frac{1}{x}-\frac{1}{x}=\lim _{x \rightarrow 0^{+}} 0=0 \\
& \frac{\text { S }}{}=0.0^{-},|x|=-x . \text { So } \lim _{x \rightarrow 0^{-}} \frac{1}{x}-\frac{1}{|x|}=\lim _{x \rightarrow 0^{-}} \frac{1}{x}+\frac{1}{x}=\lim _{x \rightarrow 0^{-}} \frac{2}{x}=-\infty
\end{aligned}
$$ $x-2$

1. Let $f(x)=\frac{1}{2} e^{x}$ and assume $g(x)$ is a function with the property that $g(x) \leq f(x)$ for all real numbers.
(a) Graph and label $f(x)$ below.
(b) While we do not know exactly what $g(x)$
 looks like, graph two different possible graphs of $g(x)$ and one example of a graph that could not possibly be $g(x)$. Compare your pictures with your neighbors' drawing.
(c) Assume $\lim _{x \rightarrow 1} g(x)=L$, what can you say (if anything) about L ?

$$
\begin{aligned}
& \lim _{x \rightarrow 1} g(x) \leq \lim _{x \rightarrow 1} \frac{1}{2} e^{x}=\frac{1}{2} e^{\prime}=\frac{e}{2} \\
& \text { So } L \leq \frac{e}{2} . \quad \begin{array}{l}
\text { That is, what ever Lis } \ldots . \\
\text { it can't be more than } \frac{e}{2}
\end{array}
\end{aligned}
$$

2. Let $f(x)=x^{2}+2$ and let $h(x)=2 \cos x$. Assume that $g(x)$ is a function such that $h(x) \leq g(x) \leq f(x)$ for affreal numbers.

(b) While we do not know exactly what $g(x)$ looks like, graph two different possible graphs of $g(x)$ and one example of a graph that could not possibly be $g(x)$. Compare your pictures with your neightbors' drawing.
(c) What (if anything) can you say about $\lim _{x \rightarrow 0} g(x)$?

$$
\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} h(x)
$$

(d) What (if anything) can you say about $\lim _{x \rightarrow \pi} g(x) ? \quad-2 \leq \lim _{x \rightarrow \pi} g(x) \leq \pi^{2}+$
3. Fill in the blanks in the formal statement of the Squeeze Theorem:

$$
\text { If } h(x) \leq g(x) \leq f(x) \text { or all real numbers and } \lim _{x \rightarrow a} h(x)=L=\lim _{x \rightarrow a} f(x)
$$

$$
\lim _{x \rightarrow a} g(x)=L
$$

Note: It is sufficient for the inequality to hold close to a.

That is, $g(x)$ gets squeezed in between the two functions $f(x)$ and $h(x)$.
4. Explain why you cannot evaluate $\lim _{\theta \rightarrow 0} \theta^{2} \sin \left(\frac{1}{\theta}\right)$ by plugging in zero?

You get 0 in the denominator of the term $\frac{1}{\theta}$.
5. Use the Squeeze Theorem to evaluate the $\operatorname{limit} \lim _{\theta \rightarrow 0} \theta^{2} \sin \left(\frac{1}{\theta}\right)$.

We need to pick an $f(x)$ and an $h(x)$. We can use the fact about the sine function: $-1 \leq \sin \left(\frac{1}{\theta}\right) \leq 1$. Multiply this inequality by θ^{2} to get: $-\theta^{2} \leq \theta^{2} \sin \left(\frac{1}{\theta}\right) \leq \theta^{2}$. Since $\lim _{\theta \rightarrow 0}-\theta^{2}=0=\lim _{\theta \rightarrow 0} \theta^{2}$, we can conclude $\lim _{\theta \rightarrow 0} \theta^{2} \sin \left(\frac{1}{\theta}\right)=0$. (That is, we squeezed $\theta^{2} \sin \left(\frac{1}{\theta}\right)$

Practice Problems (Set 3): The Greatest Integer Function

Recall that the function $f(x)=\llbracket x \rrbracket$ is called the greatest integer function and outputs the greatest integer less than or equal to the input x. (Note that in other contexts this function is sometimes called the floor function.

1. Fill out the chart: | x | -2 | -1 | 0 | 0.5 | 0.75 | 0.999 | 1 | 1.1 | 1.5 | 1.999 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\llbracket x \rrbracket$ | -2 | -1 | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | 2 |
2. Sketch the graph of $f(x)=\llbracket x \rrbracket$:

function
3. Evaluate the limits below, if possible. If not, explain why they do not exist. Let n be an arbitrary integer.
(a) $\lim _{x \rightarrow 5^{+}} \llbracket x \rrbracket=5$
(e) $\lim _{x \rightarrow 5.5}(3 \llbracket x \rrbracket+\sqrt{2})=3 \cdot 5+\sqrt{2}=15+\sqrt{2}$
(b) $\lim _{x \rightarrow 5^{-}} \llbracket x \rrbracket=4$
(f) $\lim _{x \rightarrow n^{+}} \llbracket x \rrbracket=\boldsymbol{n}$
(c) $\lim _{x \rightarrow 5} \llbracket x \rrbracket=$ ONE.
LH limit is not equal RH limit.
(d) $\lim _{x \rightarrow 5.5} \llbracket x \rrbracket=5$
