RECITATION 3 More on Section 2-3: Calculating Limits Using the Limit Laws

REVIEW: Complete the table below.

Limit Laws

In the rules below c is a constant, n is an integer, and $\lim_{x\to a}f(x)$ and $\lim_{x\to a}(x)$ both exist.

1.	$\lim_{x \to a} [f(x) + g(x)] =$	2.	$\lim_{x \to a} [f(x) - g(x)] =$
3.	$\lim_{x \to a} [cf(x)] =$	4.	$\lim_{x \to a} [f(x) \cdot g(x)] =$
5.	$\lim_{x \to a} [f(x)/g(x)] =$		provided
6.	$\lim_{x \to a} (f(x))^n =$	7.	$\lim_{x \to a} c =$
8.	$\lim_{x \to a} x =$	9.	$\lim_{x \to a} x^n =$
10.	$\lim_{x \to a} \sqrt[n]{x} =$	11.	$\lim_{x \to a} \sqrt[n]{f(x)} =$
12.	If $f(x)$ is a polynomial or rational function,		then $\lim_{x \to a} f(x) =$

13. The two-sided limit $(\lim_{x \to a} f(x))$ exists if and only if

GOALS:

- Many limits are evaluated by application of the limit laws above combined with a thoughtful use of *algebra*. We will practice this today.
- There remain limits too slippery for straightforward algebra. For this reason, we will learn a technique for finding limits using a bounding (or "squeezing") approach.
- We will also review the greatest integer function.

PRACTICE PROBLEMS (SET 1): Evaluate the following limits or explain why they do not exist.

1.
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

2.
$$\lim_{h \to 0} \frac{(h-5)^2 - 25}{h}$$

3. (hint: rationalize the denominator.) $\lim_{t\to 0} \frac{t}{\sqrt{1+3t}-1}$

4.
$$\lim_{z \to 1} \frac{8-z}{c-z}$$
, where *c* is a constant.

5.
$$\lim_{x \to 3} \frac{\frac{1}{x} - \frac{1}{3}}{x - 3}$$

6.
$$\lim_{x \to 0} \frac{\sqrt{16 - x} - 4}{x}$$

7.
$$\lim_{x \to 2} \frac{x^2 - 4}{2x^2 - 3x - 2}$$

8.
$$\lim_{x \to 0} \frac{1}{x} - \frac{1}{|x|}$$

PRACTICE PROBLEMS (SET 2): The Squeeze Theorem

- 1. Let $f(x) = \frac{1}{2}e^x$ and assume g(x) is a function with the property that $g(x) \le f(x)$ for all real numbers.
 - (a) Graph and label f(x) below.

- (b) While we do not know exactly what g(x) looks like, graph two *different* possible graphs of g(x) and one example of a graph that could not possibly be g(x). Compare your pictures with your neighbors' drawings.
- (c) Assume $\lim_{x\to 1} g(x) = L$, what can you say (if anything) about *L*?
- 2. Let $f(x) = x^2 + 2$ and let $h(x) = 2 \cos x$. Assume that g(x) is a function such that $h(x) \le g(x) \le f(x)$ for all real numbers.
 - (a) Graph and label f(x) and h(x) below.

- (b) While we do not know exactly what g(x) looks like, graph two *different* possible graphs of g(x) and one example of a graph that could not possibly be g(x). Compare your pictures with your neightbors' drawings.
- (c) What (if anything) can you say about $\lim_{x\to 0} g(x)$?
- (d) What (if anything) can you say about $\lim_{x\to\pi} g(x)$?
- 3. Fill in the blanks in the formal statement of the Squeeze Theorem:

If
$$h(x) \le g(x) \le f(x)$$
 for all real numbers and $\lim_{x \to a} h(x) = L = \lim_{x \to a} f(x)$,

4. Explain why you cannot evaluate $\lim_{\theta \to 0} \theta^2 \sin\left(\frac{1}{\theta}\right)$ by plugging in zero?

5. Use the Squeeze Theorem to evaluate the limit $\lim_{\theta \to 0} \theta^2 \sin\left(\frac{1}{\theta}\right)$.

PRACTICE PROBLEMS (SET 3): The Greatest Integer Function

Recall that the function f(x) = [x] is called *the greatest integer function* and outputs the greatest integer less than or equal to the input x. (Note that in other contexts this function is sometimes called *the floor function*.

- 3. Evaluate the limits below, if possible. If not, explain why they do not exist. Let *n* be an arbitrary integer.
 - (a) $\lim_{x \to 5^+} [\![x]\!]$ (e) $\lim_{x \to 5.5} (3[\![x]\!] + \sqrt{2})$

(b)
$$\lim_{x \to 5^{-}} [x]$$
 (f) $\lim_{x \to n^{+}} [x]$

- (c) $\lim_{x \to 5} [x]$ (g) $\lim_{x \to n^{-}} [x]$
- (d) $\lim_{x \to 5.5} \llbracket x \rrbracket$