Recitation 3

More on Section 2-3: Calculating Limits Using the Limit Laws

REVIEW: Complete the table below.

Limit Laws

In the rules below c is a constant, n is an integer, and $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a}(x)$ both exist.

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=$
3. $\lim _{x \rightarrow a}[c f(x)]=$
4. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=$
5. $\lim _{x \rightarrow a}[f(x) / g(x)]=$ provided
6. $\lim _{x \rightarrow a}(f(x))^{n}=$
7. $\lim _{x \rightarrow a} c=$
8. $\lim _{x \rightarrow a} x=$
9. $\lim _{x \rightarrow a} x^{n}=$
10. $\lim _{x \rightarrow a} \sqrt[n]{x}=$
11. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=$
12. If $f(x)$ is a polynomial or rational function, then $\lim _{x \rightarrow a} f(x)=$
13. The two-sided limit $\left(\lim _{x \rightarrow a} f(x)\right)$ exists if and only if

Goals:

- Many limits are evaluated by application of the limit laws above combined with a thoughtful use of algebra. We will practice this today.
- There remain limits too slippery for straightforward algebra. For this reason, we will learn a technique for finding limits using a bounding (or "squeezing") approach.
- We will also review the greatest integer function.

Practice Problems (Set 1): Evaluate the following limits or explain why they do not exist.

1. $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$
2. $\lim _{h \rightarrow 0} \frac{(h-5)^{2}-25}{h}$
3. (hint: rationalize the denominator.) $\lim _{t \rightarrow 0} \frac{t}{\sqrt{1+3 t}-1}$
4. $\lim _{z \rightarrow 1} \frac{8-z}{c-z}$, where c is a constant.
5. $\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}$
6. $\lim _{x \rightarrow 0} \frac{\sqrt{16-x}-4}{x}$
7. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{2 x^{2}-3 x-2}$
8. $\lim _{x \rightarrow 0} \frac{1}{x}-\frac{1}{|x|}$

Practice Problems (Set 2): The Squeeze Theorem

1. Let $f(x)=\frac{1}{2} e^{x}$ and assume $g(x)$ is a function with the property that $g(x) \leq f(x)$ for all real numbers.
(a) Graph and label $f(x)$ below.
(b) While we do not know exactly what $g(x)$

looks like, graph two different possible graphs of $g(x)$ and one example of a graph that could not possibly be $g(x)$. Compare your pictures with your neighbors' drawings.
(c) Assume $\lim _{x \rightarrow 1} g(x)=L$, what can you say (if anything) about L ?
2. Let $f(x)=x^{2}+2$ and let $h(x)=2 \cos x$. Assume that $g(x)$ is a function such that $h(x) \leq g(x) \leq f(x)$ for all real numbers.
(a) Graph and label $f(x)$ and $h(x)$ below.

(b) While we do not know exactly what $g(x)$ looks like, graph two different possible graphs of $g(x)$ and one example of a graph that could not possibly be $g(x)$. Compare your pictures with your neightbors' drawings.
(c) What (if anything) can you say about $\lim _{x \rightarrow 0} g(x)$?
3. Fill in the blanks in the formal statement of the Squeeze Theorem:

If $h(x) \leq g(x) \leq f(x)$ for all real numbers and $\lim _{x \rightarrow a} h(x)=L=\lim _{x \rightarrow a} f(x)$,

4. Explain why you cannot evaluate $\lim _{\theta \rightarrow 0} \theta^{2} \sin \left(\frac{1}{\theta}\right)$ by plugging in zero?
5. Use the Squeeze Theorem to evaluate the $\operatorname{limit} \lim _{\theta \rightarrow 0} \theta^{2} \sin \left(\frac{1}{\theta}\right)$.

Practice Problems (Set 3): The Greatest Integer Function

Recall that the function $f(x)=\llbracket x \rrbracket$ is called the greatest integer function and outputs the greatest integer less than or equal to the input x. (Note that in other contexts this function is sometimes called the floor function.

1. Fill out the chart: | x | -2 | -1 | 0 | 0.5 | 0.75 | 0.999 | 1 | 1.1 | 1.5 | 1.999 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\llbracket x \rrbracket$ | | | | | | | | | | | |
2. Sketch the graph of $f(x)=\llbracket x \rrbracket$:

3. Evaluate the limits below, if possible. If not, explain why they do not exist. Let n be an arbitrary integer.
(a) $\lim _{x \rightarrow 5^{+}} \llbracket x \rrbracket$
(e) $\lim _{x \rightarrow 5.5}(3 \llbracket x \rrbracket+\sqrt{2})$
(b) $\lim _{x \rightarrow 5^{-}} \llbracket x \rrbracket$
(f) $\lim _{x \rightarrow n^{+}} \llbracket x \rrbracket$
(c) $\lim _{x \rightarrow 5} \llbracket x \rrbracket$
(g) $\lim _{x \rightarrow n^{-}} \llbracket x \rrbracket$
(d) $\lim _{x \rightarrow 5.5} \llbracket x \rrbracket$
