Recitation 4
 Review of Sections 2.2-2.6

1. Use the graph of the function $f(x)$ to answer the questions below.

(a) $\lim _{x \rightarrow-2} f(x)=\underline{1.5} \quad \lim _{x \rightarrow 0} f(x)=$ DNE
(b) $\lim _{x \rightarrow 1} f(x)=$ DNE $\quad \lim _{x \rightarrow 2} f(x)=0.5$
(c) $\lim _{x \rightarrow 3} f(x)=$ D NE
(d) $\lim _{x \rightarrow 0^{-}} f(x)=5 \quad \lim _{x \rightarrow 0^{+}} f(x)=0$
(e) $\lim _{x \rightarrow 3^{-}} f(x)=\infty \quad \lim _{x \rightarrow 3^{+}} f(x)=-\infty$
(f) $\lim _{x \rightarrow-\infty} f(x)=1 \quad \lim _{x \rightarrow \infty} f(x)=2$
(g) $f(-2)=\frac{3}{1} \quad f(0)=\frac{0}{\text { DUE }}$
(h) $f(1)=1$
$f(3)=$ DNE
List all values for which $f(x)$ fails to be continuous.

$$
x=-2,0,1,3
$$

List all asymptotes of $f(x)$ and identify which are vertical and which are horizontal.

$$
\begin{aligned}
& \text { vertical: } x=3 \\
& \text { horizontal: } x=1, x=2
\end{aligned}
$$

* 2. Evaluate the limits below: Justify your answer.
(a) $\lim _{x \rightarrow 3^{-}} \frac{\sqrt{x}}{(x-3)^{5}}=-\infty$

As x approaches 3 from below, $(x-3)^{5}$ approaches zero, also from below. So the denominator is always negative. The numerator approaches $\sqrt{3}$. Thus, the quotient approaches - ∞.
(b) $\lim _{x \rightarrow \frac{\pi^{+}}{2}} x \tan x=-\infty$

As x approaches $\frac{\pi}{2}$ from the right, tans approaches - ∞. (see graph at left). $y=\tan x: T_{\uparrow} \int_{i}$ So $x \cdot \tan x$ approaches $-\infty$.
3. Evaluate the limits if they exist. If they do not exist, explain why.

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8}=\lim _{x \rightarrow-2} \frac{(x+2)}{(x+2)\left(x^{2}-2 x+4\right)} \\
& =\lim _{x \rightarrow-2} \frac{1}{x^{2}-2 x+4}=\frac{1}{12}
\end{aligned}
$$

rationalize
the numerator!

$$
\begin{aligned}
& \text { (b) } \lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t} \cdot \frac{\sqrt{1+t}+\sqrt{1-t}}{\sqrt{1+t}+\sqrt{1-t}}=\lim _{t \rightarrow 0} \frac{1+t-(1-t)}{t(\sqrt{1+t}+\sqrt{1-t})} \\
& =\lim _{t \rightarrow 0} \frac{2 t}{t(\sqrt{1+t}+\sqrt{1-t})}=\lim _{t \rightarrow 0} \frac{2}{\sqrt{1+t}+\sqrt{1-t}}=\frac{2}{1+1}=1
\end{aligned}
$$

(c) $\lim _{x \rightarrow-6} \frac{3 x+18}{|x+6|}=$ DNE

If $x \rightarrow-6^{+}$, then $|x+6|=x+6$. So $\frac{3 x+18}{|x+6|}=\frac{3(x+6)}{x+6}=3$. numerical reasoning and If $x \rightarrow-6^{-}$, then $|x+6|=-(x+6)$. So $\frac{3 x+18}{|x+6|}=\frac{3(x+6)}{-(x+6)}=-3$. algebra
The left-hand limit and right-hand limit are not equal.
4. Find the value of c such that $B(t)$ is a continuous function where $B(t)= \begin{cases}4-\frac{1}{2} t & t<2 \\ \sqrt{t+c} & t \geq 2\end{cases}$

We know

$$
\lim _{t \rightarrow 2^{-}} B(t)=\lim _{t \rightarrow 2^{-}} 4-\frac{1}{2} t=4-1=3 \text {. }
$$

and

$$
\lim _{t \rightarrow 2^{+}} B(t)=\lim _{t \rightarrow 2^{+}} \sqrt{t+c}=\sqrt{2+c} \text {. }
$$

In order to be continuous, we That is, we require

$$
3=\sqrt{2+c} .
$$

Thus, $9=2+c$ and $c=7$ need $\lim _{t \rightarrow 2^{-}} B(t)=\lim _{t \rightarrow 2^{+}} B(t)$. \qquad 2 here?

Recitation 4
5. Given $f(x)= \begin{cases}2^{x} & x \leq 1 \\ 3-x & 1<x \leq 4 \\ \sqrt{x} & 4<x,\end{cases}$

(b) Of the numbers from part (a), at which is $f(x)$ continuous from the right? The left?
(a) at $x=1$:
answer to part (2):
(b.) $f(4)=3-4=-1$ and

$$
\lim _{x \rightarrow 1^{-}} f(x)=2^{1}=2
$$

$f(x)$ is discontinuous
so $f(4)=\lim f(x)$.

$$
\lim _{x \rightarrow 1^{+}} f(x)=3-1=2 \text { is }
$$

at $x=4$:

$$
\begin{aligned}
& \lim _{x \rightarrow 4^{-}} f(x)=3-4=-1 \longleftrightarrow \sqrt{n_{0} t} \\
& \lim _{x \rightarrow 4^{+}} f(x)=\sqrt{4}=2 \text { equal! }
\end{aligned}
$$

$$
x \rightarrow 4^{-}
$$

Answer: At $x=4$,
$f(x)$ is continuous from the left.
6. State the Intermediate Value Theorem and draw the associated picture.

If of is counts on $[a, b]$,

- $f(a) \neq f(b)$,
- N is between $f(a)$ and $f(b)$
then there is an x-value c in (a, b) so that

$$
f(c)=N
$$

7. Use the Intermediate Value Theorem to show that the equation $\sin x=x^{2}-x$ must have a solution in the interval $(1,2)$.
thinking:
pick $f(x)=x^{2}-x-\sin x$

$$
a=1, b=2
$$

$$
f(a)=1^{2}-1-\sin (1)=-\sin (1)<0
$$

because $1<\pi$.

$$
f(b)=f(2)=4-2-\sin (2)=2-\sin (2)>0
$$

because $\sin \theta<1$ always.
f is continuous because x^{2}, x, and $\sin x$ are!

Answer:
Since $f(x)=x^{2}-x-\sin x$ is continuous on $[1,2], f(1)<0$, and $f(2)>0$, the Intermediate Value Theorem says the is some c-value in $(1,2)$ so that $f(c)=0$.
So $x=C$ is a solution to the equation.

- Áside:
picture I
have in my head.

8. For each of the following, find the limit or show that it does not exist.

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow-\infty} \frac{4 x^{3}-5 x^{2}-3}{\sqrt{3} x^{3}+x+\pi} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow-\infty} \frac{4-5 / x-3 / x^{3}}{\sqrt{3}+1 / x^{2}+\pi / x^{3}} \\
& =\frac{4+0+0}{\sqrt{3}+0+0}=4 / \sqrt{3}
\end{aligned}
$$

(b)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{2+5 x^{6}}}{4+x^{3}} \cdot \frac{1 / x^{3}}{1 / x^{3}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2}{x^{3}}+5}}{\frac{4}{x^{3}}+1}
$$

$=\frac{\sqrt{5}}{1}=\sqrt{5}$
use $\frac{1}{x^{3}} \rightarrow 0$ as $x \rightarrow \infty$.
(c) $\lim _{x \rightarrow-\infty}\left(\sqrt{9 x^{2}+4 x}-3 x\right)=\infty$
(d) $\lim _{x \rightarrow 0^{+}} \tan ^{-1}(\ln x)=\frac{-\pi}{2}$

As $x \rightarrow-\infty,-3 x$ approaches $+\infty$ and $\sqrt{9 x^{2}+4}$ approaches $+\infty$. So their sum approaches $+\infty$.

As $x \rightarrow 0^{+}, \ln x$ approaches $-\infty$.
As $z \rightarrow-\infty, \tan ^{-1}(z)$ approaches $\frac{-\pi}{2}$.

9. Find the horizontal and vertical asymptotes, if any.
(a) $f(x)=\frac{4+8 x}{3 x-1}$
(b) $g(t)=\frac{t^{3}-t}{t^{2}-6 t+5}=\frac{t\left(t^{2}-1\right)}{(t-5)(t-1)}=\frac{t(t+1)(t-1)}{(t-5)(t-1)}$
as $x \rightarrow \pm \infty, f(x)=\frac{8}{3}$.
horizontal asymptote: $y=8 / 3$
as $x \rightarrow \frac{1}{3}^{+}, f(x) \rightarrow \infty$.
vertical asymptote: $x=\frac{1}{3}$
as $t \rightarrow \pm \infty, g(t) \rightarrow \pm \infty$.
So no horizontal asymptotes.
From the factored form, we see $t=1$ is where a removable discontinuity occurs.
(ie. as $t \rightarrow 1, g(t) \rightarrow-1 / 2$.)
as $t \rightarrow 5^{+}, g(t) \rightarrow \infty$.
Thus a vertical asymptote at $x=5$.

