Recitation 4
 Review of Sections 2.2-2.6

1. Use the graph of the function $f(x)$ to answer the questions below.

(a) $\lim _{x \rightarrow-2} f(x)=\square \quad \lim _{x \rightarrow 0} f(x)=$ \qquad
(b) $\lim _{x \rightarrow 1} f(x)=\quad \quad \lim _{x \rightarrow 2} f(x)=$ \qquad
(c) $\lim _{x \rightarrow 3} f(x)=$ \qquad
(d) $\lim _{x \rightarrow 0^{-}} f(x)=\quad \lim _{x \rightarrow 0^{+}} f(x)=$ \qquad
(e) $\lim _{x \rightarrow 3^{-}} f(x)=\square \lim _{x \rightarrow 3^{+}} f(x)=$ \qquad
(f) $\lim _{x \rightarrow-\infty} f(x)=\square \lim _{x \rightarrow \infty} f(x)=$ \qquad
(g) $f(-2)=$ \qquad $f(0)=$ \qquad
(h) $f(1)=$ \qquad $f(3)=$ \qquad
List all values for which $f(x)$ fails to be continuous.

List all asymptotes of $f(x)$ and identify which are vertical and which are horizontal.
2. Evaluate the limits below:
(a) $\lim _{x \rightarrow 3^{-}} \frac{\sqrt{x}}{(x-3)^{5}}$
(b) $\lim _{x \rightarrow \frac{\pi}{2}+} x \tan x$
3. Evaluate the limits if they exist. If they do not exist, explain why.
(a) $\lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8}$
(b) $\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$
(c) $\lim _{x \rightarrow-6} \frac{3 x+18}{|x+6|}$
4. Find the value of c such that $B(t)$ is a continuous function where $B(t)= \begin{cases}4-\frac{1}{2} t & t<2 \\ \sqrt{t+c} & t \geq 2 .\end{cases}$
5. Given $f(x)= \begin{cases}2^{x} & x \leq 1 \\ 3-x & 1<x \leq 4 \\ \sqrt{x} & 4<x,\end{cases}$
(a) find all the numbers at which f is discontinuous.
(b) Of the numbers from part (a), at which is $f(x)$ continuous from the right? The left?
6. State the Intermediate Value Theorem and draw the associated picture.
7. Use the Intermediate Value Theorem to show that the equation $\sin x=x^{2}-x$ must have a solution in the interval $(1,2)$.
8. For each of the following, find the limit or show that it does not exist.
(a) $\lim _{x \rightarrow-\infty} \frac{4 x^{3}-5 x^{2}-3}{\sqrt{3} x^{3}+x+\pi}$
(b) $\lim _{x \rightarrow \infty} \frac{\sqrt{2+5 x^{6}}}{4+x^{3}}$
(c) $\lim _{x \rightarrow-\infty}\left(\sqrt{9 x^{2}+4 x}-3 x\right)$
(d) $\lim _{x \rightarrow 0^{+}} \tan ^{-1}(\ln x)$
9. Find the horizontal and vertical asymptotes, if any.
(a) $f(x)=\frac{4+8 x}{3 x-1}$
(b) $g(t)=\frac{t^{3}-t}{t^{2}-6 t+5}$

