A calculator will be useful for this activity.

1. A radar gun was used to record the speed of a runner at the times given in the table.

$t(\mathrm{~s})$	0.0	0.5	1.0	1.5	2.0	2.5	3.0
$v(t)(\mathrm{m} / \mathrm{s})$	0	4.6	7.3	8.9	9.7	10.2	10.5

(a) Draw the t-axis with labels when the interval $[0,3]$ is broken into $n=6$ subintervale.

(b) Estimate the distance the runner covered during the 3 seconds using a left Remann sum. (I.e., L_{6})

$$
\begin{aligned}
L_{6} & =\frac{1}{2}\left(v(0)+v\left(\frac{1}{2}\right)+v(1)+v(3 / 2)+v(2)+v(5 / 2)\right) \\
& =1 / 2(0+4.6+7.3+8.9+9.7+10.2) \\
& =20.35 \mathrm{~m}
\end{aligned}
$$

(c) Estimate the distance the runner covered during the 3 seconds using a right Remann sum.

$$
\begin{aligned}
R_{6} & =1 / 2(4.6+7.3+8.9+9.7+10.2+10.5) \\
& =25.6 \mathrm{~m}
\end{aligned}
$$

(d) Estimate the distance the runner covered during the 3 seconds using midpoints. [Hint: you can't use 6 subintervals as you don't have the function values at the midpoints of each subinterval. Try three instead]

$$
\Delta x=1
$$

$$
\begin{aligned}
M_{3} & =1(4.6+8.9+10.2) \\
& =23.7 \mathrm{~m}
\end{aligned}
$$

2. Let's evaluate $\int_{0}^{2} 3 x d x$ by definition. The summation formula (*) $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ will come in handy.
(a) Find an expression for R_{n}, an approximation of the area under $f(x)=3 x$ on [0,2] with right endpoints and n subintervals. [Hint: $x_{1}=2 / n, x_{2}=(2 \cdot 2) / n, x_{3}=(3 \cdot 2) / n, \ldots$] You will start with an expression in summation notation and use the given formula $(*)$ to write the expression without summation.

$$
\begin{aligned}
& R_{n}=\frac{2}{n}\left(f\left(\frac{2}{n}\right)+f\left(\frac{2 \cdot 2}{n}\right)+f\left(\frac{3 \cdot 2}{n}\right)+\ldots+f\left(\frac{n \cdot 2}{n}\right)\right) \Delta x=\frac{2-0}{n}=\frac{2}{n} \\
& =\frac{2}{n}\left(3\left(\frac{2}{n}\right)+3\left(\frac{2 \cdot 2}{n}\right)+3\left(\frac{3 \cdot 2}{n}\right)+\ldots+3\left(\frac{n \cdot 2}{n}\right)\right.
\end{aligned}
$$

$$
=\frac{2}{n} \sum_{i=1}^{n} 3\left(\frac{2 i}{n}\right)
$$

$$
\begin{aligned}
& =3\left(\frac{2}{n}\right)^{2} \sum_{i=1}^{n} i=\frac{12}{n^{2}}\left(\frac{n(n+1)}{2}\right) \\
& R_{n}=\frac{6 n(n+1)}{n^{2}}
\end{aligned}
$$

(b) Find the exact area under $f(x)=3 x$ on [0,2] by evaluating $\lim _{n \rightarrow \infty} R_{n}$.

$$
\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \frac{6 n^{2}+6 n}{n^{2}}=6=A
$$

(c) Check that the area you computed is correct using geometry.

(d) Check that the area you computed is correct using FTC [part II].

$$
\begin{aligned}
\int_{0}^{2} 3 x d x=\left.\frac{3}{2} x^{2}\right|_{0} ^{2} & =\frac{3}{2}(2)^{2}-\frac{3}{2}(0)^{2} \\
& =\frac{12}{2}=6
\end{aligned}
$$

3. Consider $\int_{-2}^{2}-\sqrt{4-x^{2}} d x$.
(a) Draw a graph depicting the area described by the integral.

$$
\begin{aligned}
& y=-\sqrt{4-x^{2}} \\
& x^{2}+y^{2}=4< \text { but just } \\
& \text { bottom } \\
& \text { half }
\end{aligned}
$$

(b) Estimate the area described by the integral using left endpoints and $n=4$.

$$
\begin{aligned}
& \Delta x=\frac{2-(-2)}{4}=1 \\
& L_{4}=1\left(-\sqrt{4-(-2)^{2}}-\sqrt{4-(-1)^{2}}-\sqrt{4-0^{2}}-\sqrt{4-1^{2}}\right) \\
& \\
& =1(0-\sqrt{3}-2-\sqrt{3})=1(0-2-2 \sqrt{3}
\end{aligned}
$$

(c) Evaluate the integral exactly using a known geometric formula. semicircle; $5=2$

$$
\begin{aligned}
& \therefore=\frac{1}{2} \pi(2)^{2}=\frac{1}{2} 4 \pi=2 \pi \quad b+\quad A=-2 \pi \\
& \sim
\end{aligned}
$$

4. Let $f(x)= \begin{cases}\frac{1}{2} x+4, & x<2 \\ 15-5 x, & x \geq 2\end{cases}$
(a) Graph $f(x)$ on the domain $[-3,4]$.

(b) Use known geometric formulas to evaluate $\int_{-3}^{4} f(x) d x$
$=5(2.5)+\frac{1}{2}(5)(2.5)$

$$
=\frac{25}{2}+\frac{25}{4}=\frac{75}{4}
$$

5. Is it true that $\int_{a}^{b}[f(x)]^{2} d x=\int_{a}^{b} f(x) d x \cdot \int_{a}^{b} f(x) d x$? Before answering, evaluate (a) - (d) using FTC [part II] or geometry:
(a) $\int_{2}^{4} x d x=\left.\frac{1}{2} x^{2}\right|_{2} ^{4}=\frac{1}{2}\left(4^{2}-2^{2}\right)$

(b) $\int_{2}^{4} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{2} ^{4}=\frac{1}{3}\left(4^{3}-2^{3}\right)$

$$
\left.=\frac{1}{3}(64-8)=\frac{56}{3} \text { (not } 6^{2}\right)
$$

(c) $\int_{0}^{\pi / 2} \cos x d x, \quad\left[\right.$ note $\left.\int_{0}^{\pi / 2} \cos ^{2} x d x=\frac{\pi}{4}\right]$

$$
=\left.\sin x\right|_{0} ^{\pi / 2}=\sin \pi / 2-\sin \theta=1
$$

(d) $\int_{0}^{1} 2 d x$ and $\int_{0}^{1} 4 d x$

$$
\begin{array}{r}
\int_{0}^{1} 2 d x=\partial(1-0)=2 \quad \int_{0}^{1} 4 d x=4(1-e)=4 \\
\text { hmm... } 2^{2}=4!!
\end{array}
$$

(e) Answer the question posed at the beginning of the page.

Not necersonily. Ire. not for a generic functuen
6. Suppose we have a function $f(x)$ such that:

$$
\text { - } \int_{-2}^{7} f(x) d x=-18, \quad \bullet \int_{-2}^{6} f(x) d x=7, \quad \bullet \int_{5}^{7} f(x) d x=8
$$

Find $\int_{5}^{6} f(x) d x$. overlapl. So $\int_{5}^{6} f(k)$ is

$$
\begin{aligned}
\int_{5}^{6} f(x)+\int_{-2}^{7} f(x) d x & =\int_{-2}^{5} f(x) d x+\int_{5}^{6} f(x) d x+\int_{5}^{6} f(x) d x+\int_{6}^{\text {counting twice! }} f(x) d x \\
A-18 & +8 A A=33
\end{aligned}
$$

