A calculator will be useful for this activity.

1. A radar gun was used to record the speed of a runner at the times given in the table.

$t(\mathrm{~s})$	0.0	0.5	1.0	1.5	2.0	2.5	3.0
$v(t)(\mathrm{m} / \mathrm{s})$	0	4.6	7.3	8.9	9.7	10.2	10.5

(a) Draw the t-axis with labels when the interval $[0,3]$ is broken into $n=6$ subintervals.
(b) Estimate the distance the runner covered during the 3 seconds using a left Riemann sum. (I.e., L_{6})
(c) Estimate the distance the runner covered during the 3 seconds using a right Riemann sum.
(d) Estimate the distance the runner covered during the 3 seconds using midpoints. [Hint: you can't use 6 subintervals as you don't have the function values at the midpoints of each subinterval. Try three instead]
2. Let's evaluate $\int_{0}^{2} 3 x d x$ by definition. The summation formula (*) $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ will come in handy.
(a) Find an expression for R_{n}, an approximation of the area under $f(x)=3 x$ on [0,2] with right endpoints and n subintervals. [Hint: $x_{1}=2 / n, x_{2}=(2 \cdot 2) / n, x_{3}=(3 \cdot 2) / n, \ldots$] You will start with an expression in summation notation and use the given formula $\left({ }^{*}\right)$ to write the expression without summation.
(b) Find the exact area under $f(x)=3 x$ on $[0,2]$ by evaluating $\lim _{n \rightarrow \infty} R_{n}$.
(c) Check that the area you computed is correct using geometry.
(d) Check that the area you computed is correct using FTC [part II].
3. Consider $\int_{-2}^{2}-\sqrt{4-x^{2}} d x$.
(a) Draw a graph depicting the area described by the integral.

(b) Estimate the area described by the integral using left endpoints and $n=4$.
(c) Evaluate the integral exactly using a known geometric formula.
4. Let $f(x)= \begin{cases}\frac{1}{2} x+4, & x<2 \\ 15-5 x, & x \geq 2\end{cases}$
(a) Graph $f(x)$ on the domain $[-3,4]$.

(b) Use known geometric formulas to evaluate $\int_{-3}^{4} f(x) d x$.
5. Is it true that $\int_{a}^{b}[f(x)]^{2} d x=\int_{a}^{b} f(x) d x \cdot \int_{a}^{b} f(x) d x$? Before answering, evaluate (a) - (d) using FTC [part II] or geometry:
(a) $\int_{2}^{4} x d x$
(b) $\int_{2}^{4} x^{2} d x$
(c) $\int_{0}^{\pi / 2} \cos x d x, \quad\left[\right.$ note $\left.\int_{0}^{\pi / 2} \cos ^{2} x d x=\frac{\pi}{4}\right]$
(d) $\int_{0}^{1} 2 d x$ and $\int_{0}^{1} 4 d x$
(e) Answer the question posed at the beginning of the page.
6. Suppose we have a function $f(x)$ such that:

$$
\text { - } \int_{-2}^{7} f(x) d x=-18, \quad \bullet \int_{-2}^{6} f(x) d x=7, \quad \bullet \int_{5}^{7} f(x) d x=8 \text {. }
$$

Find $\int_{5}^{6} f(x) d x$.

