1. State, formally, the definition of the derivative of a function $f(x)$ at $x=a$.

$$
\lim _{a \rightarrow x} \frac{f(x)-f(a)}{x-a} \text { on } \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

2. Let $f(x)=5 x^{2}-3 x$.
3. Use the definition to find the derivative of $f(x)$.

$$
\begin{aligned}
f^{\prime}(x)=\lim _{a \rightarrow x} f(x)-f(a) & =\lim _{a \rightarrow x} \frac{5 x^{2}-3 x-\left(5 a^{2}-3 a\right)}{x-a} \\
& =\lim _{a \rightarrow x} \frac{5\left(x^{2}-a^{2}\right)-3(x-a)}{x-a} \\
& =\lim _{a \rightarrow x} \frac{5(x-a)(x+a)-3(x-a)}{x-a} \\
& =\lim _{a \rightarrow x} 5(x+a)-3=5(a+a)-3 \\
\text { 2. Find the slope of the tangent line to } f(x) \text { when } x=-3 . & =10 a-3
\end{aligned}
$$

$$
f^{\prime}(-3)=-33
$$

3. Write the equation of the line tangent to $f(x)$ when $x=-3$.

$$
\begin{aligned}
y & =f(-3)+f^{\prime}(-3)(x-(-3)) \\
& =54-33(x+3)
\end{aligned}
$$

3. Suppose N represents the number of people in the United States who travel by car to another state for a vacation this Memorial Day weekend when the average price of gasoline is p dollars per gallon.
4. What are the units of $d N / d p$?
people/ dollar
5. In the context of the problem, interpret $\frac{d N}{d p}$.

Th. s is the rate at which the number of travellas chases us the pare of gas increases.
3. Would you expect $d N / d p$ to be positive or negative? Explain your answer.

Negative. The number of tackles should decrease as the prize of goo goes up.
4. The graph of $f(x)$ is sketched below. On a separate set of axes, give a rough sketch $f^{\prime}(x)$.

5. Find the domain of each function.

1. $f(x)=\sqrt{x^{2}-x-6}$
2. $g(t)=\ln (t+6)$

Need $\quad x^{2}-x-6 \geqslant 0$

$$
(x+2)(x-3) \geqslant 0
$$

So $x \leqslant-2$ or $x \geqslant 3$

$$
t>-6
$$

$$
(-6, \infty)
$$

6. State the definition of "The function $f(x)$ is continuous at $x=a$ ".

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

7. Suppose

$$
f(x)=\left\{\begin{array}{cc}
-\frac{2}{x} & x<2 \\
\frac{x}{x-3} & x \geq 2
\end{array}\right.
$$

Is $f(x)$ continuous at $x=0$? At $x=2$? Justify your answers using the definition of continuity.
At 0? No. The function $131^{\prime} 4$ defined there. At $x=2$? No. $\lim _{x \rightarrow 2^{-}} \frac{-2}{x}=-1, \lim _{x \rightarrow 2^{+}} \frac{x}{x-3}=\frac{2}{-1}=-2$.
Since $-1 \neq-2, \lim _{x \rightarrow 2} f(x)$ docs not exit, much less equal $f(2)$.
8. Find the limit or show that it does not exist. Make sure you are writing your mathematics correctly and clearly.

1. $\lim _{x \rightarrow \infty} \frac{10^{x}-1}{3-10^{x}}=\lim _{x \rightarrow \infty} \frac{1-10^{-x}}{3 \cdot 10^{-x}-1}=\frac{1-0}{0-1}=-1$
2. $\lim _{x \rightarrow \infty} \frac{\sqrt[3]{8 x^{3}+1}}{2-5 x}=\lim _{x \rightarrow \infty} \frac{x^{3} \sqrt[3]{8+1 / x^{3}}}{2-5 x}$

$$
=\lim _{x \rightarrow \infty} \frac{\sqrt[3]{8-1 / x^{3}}}{2 / x-5}
$$

$$
=\frac{\sqrt[2]{8}}{-5}=\frac{-2}{5}
$$

9. Write the formula for a function with vertical asymptotes at $x=-1$ and $x=3$ and a horizontal asymptote at $y=4 / 3$.

$$
f(x)=\frac{1}{(x+1)(x-3)}+\frac{4}{3}
$$

10. Sketch the graph of the function from problem 7 .

11. $e^{x-3}+2=6$

$$
\text { 3. } \ln x+\ln (x-1)=0
$$

$$
e^{x-3}=4
$$

$$
x-3=\ln (4)
$$

$$
x=3+\ln (4)
$$

2. $\ln (x+5)-3=7$

$$
\ln (x+5)=10
$$

$$
x+S=e^{10}
$$

$$
x=e^{10}-5
$$

3. $\ln x+\ln (x-1)=0$
$\ln (x(x-1))=0$
$x(x-1)=e^{0}=1$
$x^{2}-x-1=0 \quad x=\frac{1 \pm \sqrt{1+4}}{2}$
$8 x=\frac{\pi}{2}+k \pi$
$x=\frac{\pi}{16}+k \frac{\pi}{8}$
$k \in \mathbb{C o s}(8 x)=0$
:---

12.
13. What does the Intermediate Value Theorem say? You may want to include a picture with your explanation.
If $f(x)$ is continues on $[0, b]$ and c is a number between $f(a)$ and $f(b)$ then there is x in $[a, b]$ with $f(x)=c$:
fa)

14. Use the Intermediate Value Theorem to show $\ln x=x-5$ has a solution. (Hint: Show there is a solution in the interval $\left[1, e^{5}\right]$.)
Let $f(x)=\ln (x)-x+5$. Notice $f(x)$ is continuous O^ $(0, \infty)$ and so also on $\left[1, e^{5}\right]$. Moreover,

$$
\begin{aligned}
& f(1)=0-1-5=-6<0 \text { and } \\
& f\left(e^{5}\right)=\ln \left(e^{5}\right)+e^{5}-5=e^{5}>0
\end{aligned}
$$

13. So the ne is x in $\left[1, e^{5}\right]$ with $f(x)=0$.
14. What does the Squeeze Theorem say? You may want to include a picture with your explanation.
If $g(x) \leq f(x) \leq h(x)$ near $x=\alpha$, but maybe not at $x=a$, ad if $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} f(x)=L$ also o.

15. Use the Squeeze Theorem to show $\lim _{x \rightarrow \infty} \frac{\cos (2 x)}{3 x^{2}}=0$.

Sure $-1 \leq \cos (2 x) \leq 1, \quad \frac{1}{3 x^{2}} \leq \frac{\cos (2 x)}{3 x^{2}} \leq \frac{1}{3 x^{2}}$.
Since $\lim _{x \rightarrow \infty}-\frac{1}{3 x^{2}}=\lim _{x \rightarrow \infty} \frac{1}{3 x^{2}}=0, \quad \lim _{x \rightarrow \infty} \frac{\cos (2 x)}{3 x^{2}}=0$.
15. Sketch each of the functions below. Label all x - and y-intercepts and asymptotes. State, in interval notation, the domain and range of each function next to its graph.

1. $y=6-x^{4}$
2. $y=\tan ^{-1} x$
3. $y=-2 /(x+3)$
4. $y=\sin (2 x)$
5. $y=e^{x-1}+2$
6. $y=\sqrt{x+5}$
7. $y=\tan x$
8. $y=\ln x$

