1. State, formally, the definition of the derivative of a function f(x) at x = a.

- **2.** Let $f(x) = 5x^2 3x$.
 - 1. Use the definition to find the derivative of f(x).

2. Find the slope of the tangent line to f(x) when x = -3.

3. Write the equation of the line tangent to f(x) when x = -3.

- **3.** Suppose *N* represents the number of people in the United States who travel by car to another state for a vacation this Memorial Day weekend when the average price of gasoline is *p* dollars per gallon.
 - 1. What are the units of dN/dp?
 - 2. In the context of the problem, interpret $\frac{dN}{dp}$.
 - 3. Would you expect dN/dp to be positive or negative? Explain your answer.

4. The graph of f(x) is sketched below. On a separate set of axes, give a rough sketch f'(x).

5. Find the domain of each function.

1.
$$f(x) = \sqrt{x^2 - x - 6}$$
 2. $g(t) = \ln(t + 6)$

6. State the definition of "The function f(x) is continuous at x = a".

7. Suppose

$$f(x) = \begin{cases} -\frac{2}{x} & x < 2\\ \frac{x}{x-3} & x \ge 2 \end{cases}$$

Is f(x) continuous at x = 0? At x = 2? Justify your answers using the definition of continuity.

8. Find the limit or show that it does not exist. *Make sure you are writing your mathematics correctly and clearly.*

1.
$$\lim_{x \to \infty} \frac{10^x - 1}{3 - 10^x}$$

2.
$$\lim_{x \to \infty} \frac{\sqrt[3]{8x^3 + 1}}{2 - 5x}$$

9. Write the formula for a function with vertical asymptotes at x = -1 and x = 3 and a horizontal asymptote at y = 4/3.

10. Sketch the graph of the function from problem *7*.

11. Solve for x.

1.
$$e^{x-3} + 2 = 6$$

3. $\ln x + \ln(x-1) = 0$

2.
$$\ln(x+5) - 3 = 7$$
 4. $\cos(8x) = 0$

12.

1. What does the Intermediate Value Theorem say? You may want to include a picture with your explanation.

2. Use the Intermediate Value Theorem to show $\ln x = x - 5$ has a solution. (Hint: Show there is a solution in the interval $[1, e^5]$.)

13.

1. What does the Squeeze Theorem say? You may want to include a picture with your explanation.

14. Use the Squeeze Theorem to show $\lim_{x \to \infty} \frac{\cos(2x)}{3x^2} = 0$.

- **15.** Sketch each of the functions below. Label all *x* and *y*-intercepts and asymptotes. State, in interval notation, the domain and range of each function next to its graph.
 - 1. $y = 6 x^4$ 4. $y = \tan^{-1} x$ 7. y = -2/(x+3)2. $y = \sin(2x)$ 5. $y = e^{x-1} + 2$ 8. $y = \sqrt{x+5}$
 - 3. $y = \tan x$ 6. $y = \ln x$