1. State, formally, the definition of the derivative of a function $f(x)$ at $x=a$.
2. Let $f(x)=5 x^{2}-3 x$.
3. Use the definition to find the derivative of $f(x)$.
4. Find the slope of the tangent line to $f(x)$ when $x=-3$.
5. Write the equation of the line tangent to $f(x)$ when $x=-3$.
6. Suppose N represents the number of people in the United States who travel by car to another state for a vacation this Memorial Day weekend when the average price of gasoline is p dollars per gallon.
7. What are the units of $d N / d p$?
8. In the context of the problem, interpret $\frac{d N}{d p}$.
9. Would you expect $d N / d p$ to be positive or negative? Explain your answer.
10. The graph of $f(x)$ is sketched below. On a separate set of axes, give a rough sketch $f^{\prime}(x)$.

11. Find the domain of each function.
12. $f(x)=\sqrt{x^{2}-x-6}$
13. $g(t)=\ln (t+6)$
14. State the definition of "The function $f(x)$ is continuous at $x=a$ ".
15. Suppose

$$
f(x)=\left\{\begin{array}{cc}
-\frac{2}{x} & x<2 \\
\frac{x}{x-3} & x \geq 2
\end{array}\right.
$$

Is $f(x)$ continuous at $x=0$? At $x=2$? Justify your answers using the definition of continuity.
8. Find the limit or show that it does not exist. Make sure you are writing your mathematics correctly and clearly.

1. $\lim _{x \rightarrow \infty} \frac{10^{x}-1}{3-10^{x}}$
2. $\lim _{x \rightarrow \infty} \frac{\sqrt[3]{8 x^{3}+1}}{2-5 x}$
3. Write the formula for a function with vertical asymptotes at $x=-1$ and $x=3$ and a horizontal asymptote at $y=4 / 3$.
4. Sketch the graph of the function from problem 7 .
5. Solve for x.
6. $e^{x-3}+2=6$
7. $\ln x+\ln (x-1)=0$
8. $\ln (x+5)-3=7$
9. $\cos (8 x)=0$
10.
11. What does the Intermediate Value Theorem say? You may want to include a picture with your explanation.
12. Use the Intermediate Value Theorem to show $\ln x=x-5$ has a solution. (Hint: Show there is a solution in the interval $\left[1, e^{5}\right]$.)
13.
14. What does the Squeeze Theorem say? You may want to include a picture with your explanation.
15. Use the Squeeze Theorem to show $\lim _{x \rightarrow \infty} \frac{\cos (2 x)}{3 x^{2}}=0$.
16. Sketch each of the functions below. Label all x - and y-intercepts and asymptotes. State, in interval notation, the domain and range of each function next to its graph.
17. $y=6-x^{4}$
18. $y=\sin (2 x)$
19. $y=\tan x$
20. $y=\tan ^{-1} x$
21. $y=e^{x-1}+2$
22. $y=\ln x$
23. $y=-2 /(x+3)$
24. $y=\sqrt{x+5}$
