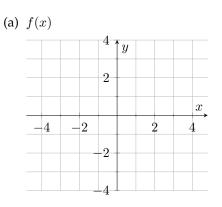
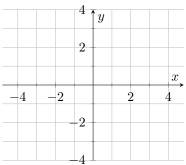
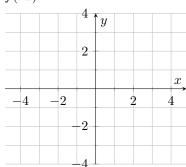
Lecture: 1-3: Transformations and Trigonometry Review

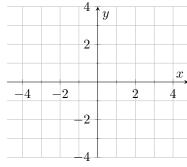

Transformation Review

- 1. Explain what each does to the *original* graph y = f(x). (Assume c > 0.)
 - (a) f(x) + c (e) cf(x)


 (b) f(x) c (f) f(cx)

 (c) f(x + c) (g) -f(x)
 - (d) f(x-c) (h) f(-x)

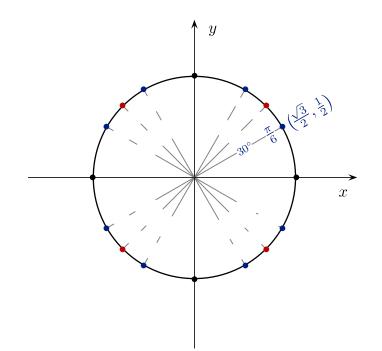

2. Let $f(x) = \begin{cases} 2 & x \le 1 \\ 3-x & x > 1 \end{cases}$. Graph each of the following using the ideas from # 1 above.


(b) f(x+1)

Three Views of Trigonometric Functions

- sides of a right triangle
- points on the unit circle
- graphs in the *xy*-plane

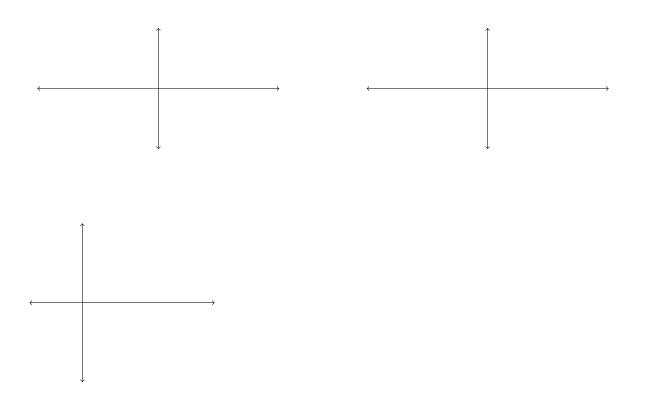
The Triangle Defintion


3. Sketch a right triangle with side *a* adjacent to an angle θ , *o* opposite of the angle θ and hypotenuse *h*. Define each of the six trigonometric functions in terms of that triangle.

a) $\sin \theta$ b) $\cos \theta$ c) $\tan \theta$ d) $\sec \theta$ e) $\csc \theta$ f) c	a) $\sin \theta$	b) $\cos \theta$	c) $\tan \theta$	d) $\sec \theta$	e) $\csc \theta$	f) cot
---	------------------	------------------	------------------	------------------	------------------	--------

4. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine and tangent of the base angle.

The Unit Circle Approach


5. Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of ALL of the points on the unit circle.

6. Without a calculator evaluate:

(a)
$$\sin(\frac{2\pi}{3})$$
 (b) $\cos(\frac{5\pi}{4})$ (c) $\tan(\frac{-\pi}{4})$

7. On the axes below, graph *at least two cycles* of $f(x) = \sin x$, $f(x) = \cos x$, and $f(x) = \tan x$. Label all *x*- and *y*-intercepts.

8. Use the graphs above to solve the equations below.

(c)
$$\tan x = 0$$

(b) $\sin x = 1$ (d) $\sin x = 1/2$ (Find all solutions in $[0, 2\pi]$.)

- 9. For each problem below, sketch the graph and use it to help you solve the equation or answer the question.
 - (a) Graph $y = \sin(x 1)$ and use it to solve the equation $\sin(x 1) = 1$.

(b) Graph $y = \sin(x/2)$ and use it to find the domain of $f(x) = \csc(x/2)$.

(c) Graph $y = -2\cos(x)$ and use it to solve the equation $-2\cos(x) = 0$.