Lecture: 1-3: Transformations and Trigonometry REVIEW

Transformation Review

1. Explain what each does to the original graph $y=f(x)$. (Assume $c>0$.)
(a) $f(x)+c$
(e) $c f(x)$
(b) $f(x)-c$
(f) $f(c x)$
(c) $f(x+c)$
(g) $-f(x)$
(d) $f(x-c)$
(h) $f(-x)$
2. Let $f(x)=\left\{\begin{array}{ll}2 & x \leq 1 \\ 3-x & x>1\end{array}\right.$. Graph each of the following using the ideas from \# 1 above.
(a) $f(x)$

(b) $f(x+1)$

(c) $f(2 x)$

(d) $-2 f(x)$

Three Views of Trigonometric Functions

- sides of a right triangle
- points on the unit circle
- graphs in the $x y$-plane

The Triangle Defintion

3. Sketch a right triangle with side a adjacent to an angle θ, o opposite of the angle θ and hypotenuse h. Define each of the six trigonometric functions in terms of that triangle.
a) $\sin \theta$
b) $\cos \theta$
c) $\tan \theta$
d) $\sec \theta$
e) $\csc \theta$
f) $\cot \theta$
4. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine and tangent of the base angle.

The Unit Circle Approach
5. Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of ALL of the points on the unit circle.

6. Without a calculator evaluate:
(a) $\sin \left(\frac{2 \pi}{3}\right)$
(b) $\cos \left(\frac{5 \pi}{4}\right)$
(c) $\tan \left(\frac{-\pi}{4}\right)$
7. On the axes below, graph at least two cycles of $f(x)=\sin x, f(x)=\cos x$, and $f(x)=\tan x$. Label all x - and y-intercepts.

8. Use the graphs above to solve the equations below.
(a) $\cos x=1$
(c) $\tan x=0$
(b) $\sin x=1$
(d) $\sin x=1 / 2$ (Find all solutions in $[0,2 \pi]$.)
9. For each problem below, sketch the graph and use it to help you solve the equation or answer the question.
(a) Graph $y=\sin (x-1)$ and use it to solve the equation $\sin (x-1)=1$.
(b) Graph $y=\sin (x / 2)$ and use it to find the domain of $f(x)=\csc (x / 2)$.
(c) Graph $y=-2 \cos (x)$ and use it to solve the equation $-2 \cos (x)=0$.

