6. (10 points) A landscape architect wishes to enclose a rectangular garden on one side by a brick wall costing $\$ 30$ per foot and on the other three sides with a metal fence costing $\$ 10$ per foot. The area of the garden is to be $800 \mathrm{ft}^{2}$. What are the dimensions of the garden that minimize the cost of the fencing? (For full credit, you must justify your answer.)

goal: minimize cost

$$
\begin{aligned}
& \text { cost }=C=30 y+10 y+2(10)(x)=40 y+20 x . \\
& \text { so } C(x)=40\left(800 x^{-1}\right)+20 x=32000 x^{-1}+20 x .
\end{aligned}
$$

Now $C^{\prime}(x)=-32000 x^{-2}+20 x=0$

$$
20 x=\frac{32000}{x^{2}} \text { or } x^{3}=\frac{32000}{20}=1600
$$

answer the question

So $x=40$.
First Der. Test:

$C(x)$ has a local min at $x=40$.
is $x=40$ a global min?
option : Yes. Because $x=40$ is the only crit. point in the domain in which $C(x)$ is continuous.
option 2 : Yes. Because $C^{\prime \prime}(x)=64000 x^{-3}+20$ which is always positive on in the domain. So $C(x)$ is c cup.
7. (12 points) Let $g(x)=\frac{e^{x}}{1+x}$. Note first and second derivatives are

$$
g^{\prime}(x)=\frac{x e^{x}}{(1+x)^{2}} \quad \text { and } \quad g^{\prime \prime}(x)=\frac{e^{x}\left(x^{2}+1\right)}{(1+x)^{3}} .
$$

(a) Evaluate the following limits.
i. $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{e^{x}}{1+x} \stackrel{(1)}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{1}=\infty$
ii. $\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow \infty} \frac{e^{-x}}{1-x}=\lim _{x \rightarrow \infty} \frac{1}{e^{x}(1-x)}=0$ since $e^{x}(1-x) \rightarrow-\infty$.
iii. $\lim _{x \rightarrow-1^{-}} g(x)=\lim _{x \rightarrow-1^{-}} \frac{e^{x}}{1+x}=-\infty$ since $e^{x} \rightarrow e^{\frac{1}{e}}$ and $1-x \rightarrow 0^{-}$.
(b) Sketch the graph of $g(x)$. Label any asymptotes, x - and y-intercepts, local minimums and local maximums, and inflection points, if appropriate.
Note (ii) and (iii) imply $y=0$ is a horizontal asymptote and $x=-1$ is a vertical asymptote.

9. (10 points) The function $f(x)$ has been graphed below. The curve for $0<x<2$ is an upper half circle. Define a new function $g(x)$, as

$$
g(x)=\int_{0}^{x} f(s) d s
$$

Use the graph above to answer the questions below.
Note: Pay attention to whether question concerns the function f, f^{\prime}, g or g^{\prime}.
(a) What is the value of $f(0)$?

$$
f(0)=0
$$

(b) What is the value of $g(3)$?
signed area under curve from $x=0$ to $x=3$

$$
\text { Ans: } \begin{aligned}
& \frac{1}{2} \pi(1)^{2}-\frac{1}{2}(1)(1) \\
= & \frac{1}{2} \pi-\frac{1}{2}=\frac{1}{2}(\pi-1)
\end{aligned}
$$

$$
g(-2)=\int_{0}^{-2} f(s) d s=-\int_{-2}^{0} f(s) d s=-\frac{1}{2}
$$

(d) What is the value of $f^{\prime}(2)$?

DEE.
A corner at $x=2$. So $f^{\prime}(2)$ is undefined.
(e) What is the value of $g^{\prime}(1)$?
$g^{\prime}(x)=f(x)$ by FTC part.
Ans: $g^{\prime}(1)=f(1)=1$

