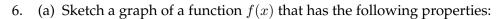

SECTION 2-6 LIMITS AT INFINITY (DAY 1)

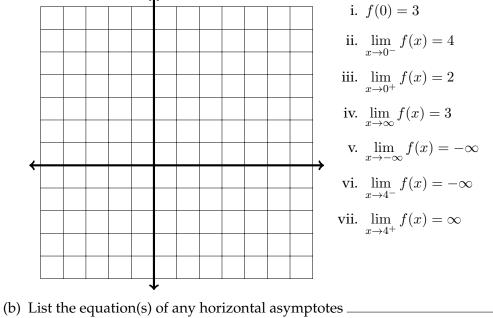
1. Consider the function f(x) whose graph is shown below.

- (b) Write the equations of any horizontal and vertical asymptotes.
- 2. By thinking about the graphs of these functions or using your intuition (what's happening as *x* gets big?), find the following limits, if they exist.
 - a) $\lim_{x \to \infty} \frac{1}{7x+1}$ b) $\lim_{x \to \infty} \sin x$ c) $\lim_{x \to \infty} 3e^{-x}$

3. Explain: as
$$x \to \infty$$
, what happens to $\frac{1}{x}$? Why? What happens to $\frac{1}{x^n}$ for any positive integer *n*?

How to Determine Limits at Infinity for rational functions: Divide each term in the the numerator and denominator by the highest power of *x* in the denominator.


- 4. Find the limit. (a) $\lim_{x \to \infty} \frac{2x+5}{x-4}$ (highest power is *x*)
- (b) $\lim_{x \to \infty} \frac{x+4}{x^2+x-3}$ (highest power is x^2)


5. Find the following limits.

(a)
$$\lim_{x \to \infty} \frac{2x^2 + 5}{3x^2 + 1}$$

(b)
$$\lim_{x \to \infty} \frac{2x+5}{3x^2+1}$$

(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1}$$

- (c) List the equation(s) of any vertical asymptotes _____
- (d) List any real numbers where *f* is not continuous _____