Section 2-6 Limits at Infinity (Day 1)

1. Consider the function $f(x)$ whose graph is shown below.

(a) Determine the following limits from the graph:
i. $\lim _{x \rightarrow 2^{-}} f(x)=$
ii. $\lim _{x \rightarrow 2^{+}} f(x)=$
iii. $\lim _{x \rightarrow-1^{-}} f(x)=$
iv. $\lim _{x \rightarrow-1^{+}} f(x)=$
v. $\lim _{x \rightarrow 2.5} f(x)=$
vi. $\lim _{x \rightarrow \infty} f(x)=$
vii. $\lim _{x \rightarrow-\infty} f(x)=$
(b) Write the equations of any horizontal and vertical asymptotes.
2. By thinking about the graphs of these functions or using your intuition (what's happening as x gets big?), find the following limits, if they exist.
a) $\lim _{x \rightarrow \infty} \frac{1}{7 x+1}$
b) $\lim _{x \rightarrow \infty} \sin x$
c) $\lim _{x \rightarrow \infty} 3 e^{-x}$
3. Explain: as $x \rightarrow \infty$, what happens to $\frac{1}{x}$? Why? What happens to $\frac{1}{x^{n}}$ for any positive integer n ?

How to Determine Limits at Infinity for rational functions: Divide each term in the the numerator and denominator by the highest power of x in the denominator.
4. Find the limit.
(a) $\lim _{x \rightarrow \infty} \frac{2 x+5}{x-4}$ (highest power is x)
(b) $\lim _{x \rightarrow \infty} \frac{x+4}{x^{2}+x-3}$ (highest power is x^{2})
5. Find the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{2 x^{2}+5}{3 x^{2}+1}$
(b) $\lim _{x \rightarrow \infty} \frac{2 x+5}{3 x^{2}+1}$
(c) $\lim _{x \rightarrow \infty} \frac{2 x^{3}+5}{3 x^{2}+1}$
6. (a) Sketch a graph of a function $f(x)$ that has the following properties:

i. $f(0)=3$
ii. $\lim _{x \rightarrow 0^{-}} f(x)=4$
iii. $\lim _{x \rightarrow 0^{+}} f(x)=2$
iv. $\lim _{x \rightarrow \infty} f(x)=3$
v. $\lim _{x \rightarrow-\infty} f(x)=-\infty$
vi. $\lim _{x \rightarrow 4^{-}} f(x)=-\infty$
vii. $\lim _{x \rightarrow 4^{+}} f(x)=\infty$
(b) List the equation(s) of any horizontal asymptotes \qquad
(c) List the equation(s) of any vertical asymptotes \qquad
(d) List any real numbers where f is not continuous \qquad

