1. Given the curve $y=g(x)$,
(a) Write an expression for the slope of the secant line through the points $P(8, g(8))$ and $Q(c, g(c))$.

$$
m_{\sec }=\frac{g(c)-g(8)}{c-8}=\frac{g(8)-g(c)}{8-c}
$$

(b) Write an expression for the slope of the tangent line at $P(8, \boldsymbol{g}(8))$.

$$
m_{\tan }=\lim _{c \rightarrow 8} \frac{g(c)-g(8)}{c-8}
$$

(c) Sketch a "cartoon" including $g(x), P$ and Q and use it to illustrate the computations in parts (a) and (b) above.
2. (a) Fill in the boxes The derivative of a function f at a number a is:

$$
r_{(0)}-\frac{f(a+h)-f(a)}{h}
$$

provided the limit exists!

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{6(2+h)-3(2+h)^{2}-[12-12]}{h} \\
& =\lim _{h \rightarrow 0} \frac{12+6 h-3\left(4+4 h+h^{2}\right)}{h}=\lim _{h \rightarrow 0} \frac{-6 h-3 h^{2}}{h}=\lim _{h \rightarrow 0}-6-3 h=-6
\end{aligned}
$$

(c) Find $f(2)$. $\quad f(2)=6 \cdot 2-3 \cdot 2^{2}=12-12=0$
(d) Use the answers to parts (a) and (b) to write an equation of the line tangent to $f(x)$ when $x=2$.
For equ. of line, I need point: $(2,0)$ Slope: -6 .

$$
\text { line: } y-0=-6(x-2) \text { or } y=-6(x-2)
$$

(e) Sketch a "cartoon" including $f(x)$ and that tangent line. Is your answer in part (c) plausible?

2

