Worksheet §2.8: Finding Derivatives Graphically

When you are asked to sketch the derivative on the provided axes, I am interested in the qualitative behavior of the derivative: Where does it cross the *x*-axis? Is it positive or negative? Is it a lot positive or a little positive? Are the slopes growing steeper or getting less steep? (This is why the *y*-axis is unmarked on the answer graphs.)

Exercise 2. The equation of Graph 1 is

$$f(x) = 2x + \frac{x^2}{4}.$$

Recall

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Use the definition of the derivative to compute the derivative f'(x). (Attach a separate page if you need more room.) What kind of function is f'(x)? How does the graph of f'(x) compare to the derivative you drew?

Exercise 4. What is an important difference between the derivative of graph 3 and the derivative of graph 4? Use terminology from calculus.

Exercise 5. Sketch the derivatives of graphs 5 and 6.

