linearization, $L(x)$, means tangent line to graph of $f(x)$ at $x=a$ of $f(x)$ at $x=a$ with y replaced by $L(x)$

Example. Find the linearization of $f(x)=\sqrt{x}$ at $a=4$.
work: $\quad f(4)=\sqrt{4}=2$ point $(4,2)$

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}, \quad m=f^{\prime}(4)=\frac{1}{2}(4)^{-1 / 2}=\frac{1}{4}
$$

tangent line: $\quad y-2=\frac{1}{4}(x-4)$ or $y=2+\frac{1}{4}(x-4)$
ANSWER: $L(x)=2+\frac{1}{4}(x-4)$ note: I doit simplify...
Why?\} $L(x)$ is good at approximating $f(x)$ NEAR $a=4$.

$$
\underset{\sim}{(4.1, \sqrt{4.1})}=(4.1,2.0248 \cdots)
$$

$4_{4.1}^{1} \longrightarrow$
The point is that these y-values (outputvaluas) are REALLY clos!

1. Use the linear approximation of $f(x)=\sqrt{x}$ at $x=4$ to approxmiate $\sqrt{4.1}$ and compare your result to its approximation computed by your calculator.

$$
\frac{1}{4} \cdot(0.1)=(0.25)(0.1)
$$

$\rightarrow L(x)=2+\frac{1}{4}(x-4) \quad$ (from previous page)

$$
l=0.025
$$

Plug in $x=4.1$ into $L(x): \quad L(4.1)=2+\frac{1}{4}(4.1-4)=2+\frac{1}{4} \cdot(0.1)=2.025$
Compare: $f(4.1)=\sqrt{4.1}=2.0248 \ldots$
to $L(4.1)=2.025$
error ≈ 0.0002 (!!) \in See picture on previous page.!
2. Use the linear approximation to approximate the cosine of $29^{\circ}=\frac{29}{30} \frac{\pi}{6}$ radians.
(1) linearisatia What is $f(x)$? a?

$$
\begin{aligned}
& f(x)=\cos x \\
& a=30^{\circ}
\end{aligned}
$$

$$
L(x)=\frac{\sqrt{3}}{2}-\frac{1}{2}\left(x-\frac{\pi}{6}\right)
$$

Work: Find tangent lines

$$
\left.\begin{array}{l}
f(\pi / 6)=\sqrt{3} / 2 \\
f^{\prime}(\pi / 6)=-\sin (\pi / 6)=-\frac{1}{2}
\end{array}\right)
$$

approximation
aside: $\cos \left(29^{\circ}\right)=0.874619$
3. Find the linear approximation of $f(x)=\ln (x)$ at $a=1$ and use it to approxmate $\ln (0.5)$ and $\ln (0.9)$. Compare your approximation with your calculator's. Sketch both the curve $y=\ln (x)$ and $y=L(x)$ and label the points $A=(0.5, \ln (0.5))$ and $B=(0.5, L(0.5))$

$$
\begin{aligned}
f(1) & =\ln (1)=0 . & \text { point }(1,0) & \text { compare } \ln (0.5)
\end{aligned}=-0.6931 \text { vs. }-0.5
$$

$$
\text { line: } y-0=1(x-1)
$$

$$
L(x)=x-1
$$

$$
L(0.5)=0.5-1=-0.5
$$

$$
L(0.9)=0.9-1=-0.1
$$

Both are clos.

Differential
the differential means $d y=f^{\prime}(x) d x$ of $\quad y=f(x)$
Example: The differential of $y=x^{1 / 2}$ is $d y=\frac{1}{2} x^{-\frac{1}{2}} d x$
Why? The differential estimates how much y changes for a given change in x. in line with slope $m=f^{\prime}(a)$

Picture
 The differential uses the tangent line for this estimation.

Look at problem 4
4. A tree is growing and the radius of its trunk in centemeters is $r(t)=2 \sqrt{t}$ where t is measured in years. Use the differential to estimate the change in radius of the tree from 4 years to 4 years and one month.
(3) the differential: $d r=2 \cdot \frac{1}{2} \cdot t^{-1 / 2} d t$ or $d r=\frac{1}{\sqrt{t}} d t$ differential
estimate Δr as t goes from 4 yeas to $4 \frac{1}{12}$ year.
So $\Delta t=\frac{1}{12}$. Plug in: $t=4, d t=\frac{1}{12}$ to get

$$
d r=\frac{1}{\sqrt{4}} \cdot \frac{1}{12}=\frac{1}{24} \mathrm{~cm}
$$

5. A coat of paint of thinkness 0.05 cm is being added to a hemispherical dome of radius 25 m Estimate the volume of paint needed to accomplish this task. [Challenge: will this be an underestimate or an overestimate? Thinking geometrically or thinking algebraically will both give you the same answer.]

function? volume: $V=\frac{4}{3} \pi r^{3}\left(\frac{1}{2}\right)$
0.05 cm thick paint

- Estimation: $r=25 \mathrm{~m}, d r=0.05 \mathrm{~cm}=\frac{0.05}{100} m=0.0005 \mathrm{~m}$

$$
\text { So } d V=\frac{2 \pi(25)^{2} 0.05}{100}=1.96 \mathrm{~m}^{3}
$$

6. The radius of a disc is 24 cm with an error of $\pm 0.5 \mathrm{~cm}$. Estimate the error in the area of the disc as an absolute and as a relative error.
7. The radius of a disc is 24 cm with an error of $\pm 0.5 \mathrm{~cm}$. Estimate the error in the area of the disc as an absolute and as a relative error.

$$
\begin{aligned}
A & =\pi r^{2} \\
d A & =2 \pi r d r \\
d A & =2 \pi \cdot 24 \cdot \frac{1}{2}=24 \pi \approx 75.4 \mathrm{~cm}
\end{aligned}
$$

For a $\frac{1}{2} \mathrm{~cm}$ error in measurement of r, a calculation of area A can have an error of as much as 75.4 cm .

$$
\underset{\text { error }}{\text { relative }}=\frac{d A}{A}=\frac{75.4}{\pi(25)^{2}}=0.0384=3.84 \%
$$

So an error of $\frac{1}{2} \mathrm{~cm}$ can produce an error in calculated area by as much as 3.84%.

