Derivatives of Trigonometric Functions:

- $\frac{d}{d x}(\sin x)=\cos \mathrm{X}$
- $\frac{d}{d x}(\csc x)=-\csc x \cot \mathbf{x}$
- $\frac{d}{d x}(\cos x)=\frac{-\boldsymbol{\operatorname { s i n }} \boldsymbol{X}}{\boldsymbol{s e c}^{2} \boldsymbol{X}}$
- $\frac{d}{d x}(\sec x)=\sec x \tan x$
- $\frac{d}{d x}(\tan x)=\sec ^{2} \mathrm{X}$
- $\frac{d}{d x}(\cot x)=-\csc ^{2} \boldsymbol{x}$

2. Derive the formula for $\frac{d}{d x}[\tan (x)]$.

$$
\begin{aligned}
\frac{d}{d x}\left[\frac{\sin x}{\cos x}\right] & =\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x
\end{aligned}
$$

3. Find the derivative of $y=\frac{\sec x}{1-x \tan x}$.

$$
\begin{aligned}
y^{\prime} & =\frac{(1-x \tan x)(\sec x \tan x)-(\sec x)\left(0-\frac{d}{d x}(x \tan x)\right)}{(1-x \tan x)^{2}} \\
& =\frac{(1-x \tan x)(\sec x \tan x)+(\sec x)\left[1 \cdot(\tan x)+(x)\left(\sec ^{2} x\right)\right]}{(1-x \tan x)^{2}} \\
& =\frac{(1-x \tan x)(\sec x \tan x)+\sec x \tan x+x \sec ^{3} x}{(1-x \tan x)^{2}}
\end{aligned}
$$

4. If $f(\theta)=e^{\theta} \cos (\theta)$, find $f^{\prime \prime}(\theta)$.

$$
\begin{aligned}
f^{\prime}(\theta) & =e^{\theta} \cos \theta+e^{\theta}(-\sin \theta) \\
& =e^{\theta}(\cos \theta-\sin \theta) \\
f^{\prime \prime}(\theta) & =e^{\theta}(\cos \theta-\sin \theta)+e^{\theta}(-\sin \theta-\cos \theta) \\
& =e^{\theta}(\cos \theta-\sin \theta-\sin \theta-\cos \theta) \\
& =-2 e^{\theta} \sin \theta
\end{aligned}
$$

$$
\text { : } \begin{aligned}
\text { 5. Find } \frac{d}{d t}[t \sin t \cos t] . & f^{\prime} \cdot g \\
\frac{d}{d t}[t \sin t \cos t] & =\underbrace{\frac{d}{d t}[t \sin t]}_{\downarrow}(\underbrace{(\cos t)}_{\downarrow}+\underbrace{(t \sin t)}(-\sin t) \\
& =[1 \cdot \sin t+t(\cos t)](\cos t)-t \sin ^{\prime} t \\
& =\sin t \cos t+t \cos ^{2} t-t \sin ^{2} t
\end{aligned}
$$

6. An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled down 2 cm past its rest position and then released, it vibrates vertically. The equation of motion is

$$
s=2 \cos t+3 \sin t, \text { for } t \geq 0
$$

where s is measured in centimeters and t is measured in seconds. (We are taking the positive direction to be downward.)
(a) Why might you expect to use sines and cosines to model this particular problem?

Sines + cosines go back + forth (or up down) just like a bouncing mass.
(b) Sketch a cartoon of what this problem is describing.

$$
\left\{\begin{array}{l}
\text { elastic band } \\
\sim \text { mass }
\end{array}\right.
$$

(c) Find $s(0), s^{\prime}(0)$, and $s^{\prime \prime}(0)$ including units.

$S(0)=2 \quad s^{\prime}=-2 \sin t+3 \cos t$

cm

$$
s^{\prime}(0)=3 \mathrm{~cm} / \mathrm{s}
$$

$$
S^{\prime \prime}(0)=-2 \mathrm{~cm} / \mathrm{s}^{2}
$$

(d) What does $s(0)$ tell you about the mass in the context of the problem?

The mass starts 2 cm beyond zero or resting... just like the problem says!
(e) What does $s^{\prime}(0)$ tell you about the mass in the context of the problem?

When time starts, the velocity of the mass is $3 \mathrm{~cm} / \mathrm{s}$, So the mass is released with initial velocity in the downward direction.
(f) What does $s^{\prime \prime}(0)$ tell you about the mass in the context of the problem?

When time starts, the acceleration of the mass is $-2 \mathrm{~cm} / \mathrm{s}^{2}$. So the band is causing the velocity to decrease or you can think of the UAFCalculus 1 band as pulling ${ }^{3}$ up on the mass. ${ }^{3-3 \text { Derivatives of Trig Functions }}$
$\boxed{-D r a w ~ a ~ p i c t a r e . ~}$
7. A 12 foot ladder rests against a wall. Let θ be the angle between the ladder and the wall and let x be the distance from the base of the ladder and the wall.
(a) Compute x as a function of θ.

$$
\begin{aligned}
& \sin \theta=\frac{x}{12} \text { or } \\
& x=12 \sin \theta
\end{aligned}
$$

\qquad
wall

-When $\theta=\frac{\pi}{6}, x=6$ (So ladder is 6 feet away)
(b) How fast does x change with respect to θ when $\theta=\pi / 6$? (Get an exact answer and a decimal approximation.)

$$
\frac{d x}{d t}=12 \cos \theta, \frac{d x}{d t} \left\lvert\,=12 \cos \left(\frac{\pi}{6}\right)=12 \cdot \frac{\sqrt{3}}{2}\right.
$$

$$
\theta=\frac{\pi}{6}
$$

$$
=6 \sqrt{3}
$$

$$
\approx 10.39
$$

(c) Interpret your answer from part (b) in the context of the problem. (Units will help you here.)
$10.39 \mathrm{ft} / \mathrm{radians}$
The rate of change of distance of the bottom of the 1 adder and the wall is increasing at a rate of $10.39 \mathrm{ft} / \mathrm{rad}$ when $\theta=\pi / 6$
(d) If the angle θ was decreased from $\pi / 6$ radians to $\frac{\pi}{6}-\frac{1}{100}$ radians, estimate how the distance to the wall would change. Try to answer this question using only your answer from part b.
$\geq 10.39 \mathrm{ft} / \mathrm{radians}$ means 0.1039 ft per $\frac{1}{100}$ radian
So we expect the distance to the wall to decrease by about 0.1 feet.

