Section 3.3 Derivatives of Trigonometric Functions (Day 2)

1. Fill in the table below.

Derivatives of Trigonometric Functions:

- $\frac{d}{d x}(\sin x)=$ \qquad - $\frac{d}{d x}(\csc x)=$ \qquad
- $\frac{d}{d x}(\cos x)=$ \qquad
- $\frac{d}{d x}(\tan x)=$ \qquad
- $\frac{d}{d x}(\sec x)=$ \qquad
- $\frac{d}{d x}(\cot x)=$ \qquad

2. Derive the formula for $\frac{d}{d x}[\tan (x)]$.
3. Find the derivative of $y=\frac{\sec x}{1-x \tan x}$.
4. If $f(\theta)=e^{\theta} \cos (\theta)$, find $f^{\prime \prime}(\theta)$. Simplify your answers here.
5. Find $\frac{d}{d t}[t \sin t \cos t]$.
6. An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled down 2 cm past its rest position and then released, it vibrates vertically. The equation of motion is

$$
s=2 \cos t+3 \sin t, \text { for } t \geq 0
$$

where s is measured in centimeters and t is measured in seconds. (We are taking the positive direction to be downward.)
(a) Why might you expect to use sines and cosines to model this particular problem?
(b) Sketch a cartoon of what this problem is describing.
(c) Find $s(0), s^{\prime}(0)$, and $s^{\prime \prime}(0)$ including units.
(d) What does $s(0)$ tell you about the mass in the context of the problem?
(e) What does $s^{\prime}(0)$ tell you about the mass in the context of the problem?
(f) What does $s^{\prime \prime}(0)$ tell you about the mass in the context of the problem?
7. A 12 foot ladder rests against a wall. Let θ be the angle between the ladder and the wall and let x be the distance from the base of the ladder and the wall.
(a) Compute x as a function of θ. (Drawing a picture will help.)
(b) How fast does x change with respect to θ when $\theta=\pi / 6$? (Get an exact answer and a decimal approximation.)
(c) Interpret your answer from part (b) in the context of the problem. (Units will help you here.)
(d) Determine how far the ladder is from the wall when $\theta=\pi / 6$.
(e) If the angle θ was decreased from $\pi / 6$ radians to $\frac{\pi}{6}-\frac{1}{100}$ radians, estimate how the distance to the wall would change. Try to answer this question using only your answer from part b .

