1. Pull out a calculator and complete the charts below:
(a) The variable θ is in degrees.

2. Based on the tables above, what would you conclude about:

* (a) $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$ if θ in radians (\ln degrees, it's equal to $\frac{\pi}{188}$) स (b) $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta}=0$

3. Use the definition of the derivative to find the derivative of $y=\sin (x)$ assuming x is measured in radians.

$$
\begin{aligned}
& y^{\prime}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h}>\text { use } \\
& \sin (a+b)=\sin a \cos b+\sin b \cos a \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cosh +\sinh \cos x-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cos h-\sin x}{h}+\frac{\cos x \sin h}{h} \\
& =(\sin x)\left(\lim _{h \rightarrow 0} \frac{\cos h-1}{h}\right)+(\cos x)\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \\
& \text { numerator. } \\
& \text { split access denominator } \\
& =(\sin x) \cdot 0+(\cos x)(1)=\cos x \\
& \text { If no } h \text { 's, it's a } \\
& \text { constant! } \\
& \frac{d}{d x}[\sin x]=\cos x
\end{aligned}
$$

4. Use the graph of $y=\sin x$ to sketch a graph of y^{\prime}. Does this fit with our calculation on the previous page? Why? I will put tangent's I will sketch y^{\prime} in green

Yes! It does fit.
The green graph looks + behaves like $y=\cos x$
5. Use the graph of $y=\cos x$ to sketch a graph of y^{\prime}. What would you guess y^{\prime} to be and why?

6. Use what we learned in 4. and 5. above to find the derivative of:
(a) $y=3 x^{4} \cos (x)$

$$
y^{\prime}=12 x^{3} \cos x-3 x^{4} \sin x=3 x^{3}(4 \cos x-x \sin x)
$$

(b) $y=\csc (x)$ (Use the Quotient Rule.)

$$
\begin{aligned}
& y=\frac{\frac{1}{\sin x}}{y^{\prime}=\frac{(\sin x) \cdot 0-1 \cdot \cos x}{(\sin x)^{2}}=\frac{-\cos x}{\sin ^{2} x}=-\frac{\cos x}{\sin x} \cdot \frac{1}{\sin x}}=\begin{aligned}
& =-(\cot (x))(\csc (x)) \\
& =-\csc (x) \cdot \cot (x)
\end{aligned}
\end{aligned}
$$

