SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

1. Pull out a calculator and complete the charts below:

(a) The variable θ is in degrees .	θ	0	0.001	0.01	0.1
	$\frac{\sin(\theta)}{\theta}$				
(b) The variable θ is in radians .	θ	0	0.001	0.01	0.1
	$\frac{\sin(\theta)}{\theta}$				
	θ	0	0.001	0.01	0.1
(c) The variable θ is in radians .	$\frac{1-\cos(\theta)}{\theta}$				

2. Based on the tables above, what would you conclude about:

(a)
$$\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta}$$

(b)
$$\lim_{\theta \to 0} \frac{1 - \cos(\theta)}{\theta}$$

3. Use the definition of the derivative to find the derivative of y = sin(x) assuming x is measured in radians.

4. Use the graph of $y = \sin x$ to sketch a graph of y'. Does this fit with our calculation on the previous page? Why?

5. Use the graph of $y = \cos x$ to sketch a graph of y'. What would you guess y' to be and why?

- 6. Use what we learned in 4. and 5. above to find the derivative of:
 - (a) $y = 3x^4 \cos(x)$

(b) $y = \csc(x)$ (Use the Quotient Rule.)