Section 3.3 Derivatives of Trigonometric Functions

1. Pull out a calculator and complete the charts below:
(a) The variable θ is in degrees.

θ	0	0.001	0.01	0.1
$\frac{\sin (\theta)}{\theta}$				

(b) The variable θ is in radians.

θ	0	0.001	0.01	0.1
$\frac{\sin (\theta)}{\theta}$				

(c) The variable θ is in radians.

θ	0	0.001	0.01	0.1
$\frac{1-\cos (\theta)}{\theta}$				

2. Based on the tables above, what would you conclude about:
(a) $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}$
(b) $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta}$
3. Use the definition of the derivative to find the derivative of $y=\sin (x)$ assuming x is measured in radians.
4. Use the graph of $y=\sin x$ to sketch a graph of y^{\prime}. Does this fit with our calculation on the previous page? Why?

5. Use the graph of $y=\cos x$ to sketch a graph of y^{\prime}. What would you guess y^{\prime} to be and why?

6. Use what we learned in 4. and 5. above to find the derivative of:
(a) $y=3 x^{4} \cos (x)$
(b) $y=\csc (x)$ (Use the Quotient Rule.)
