Section 3.4 The Chain Rule

1. For each function $H(x)$ below, write it as a (nontrivial) composition of functions in the form $f(g(x))$.
(a) $H(x)=\tan \left(2-x^{4}\right)$
(b) $H(x)=e^{2-2 x}$

$$
f(x)=e^{x}
$$

$$
\begin{aligned}
& f(x)=\tan x \\
& g(x)=2-x^{4}
\end{aligned}
$$

$$
g(x)=2-2 x
$$

2. Complete the Chain Rule (using both types of notation)

- If $y=f(u)$ and $u=g(x)$,
- If $F(x)=f(g(x))$,

$$
=0=\frac{d y}{d x}=\frac{d u}{d x}
$$

3. Find the derivative of the function. You do not need to simplify your answer. (2) $y=\sqrt{4-2 x}=(4-2 x)^{1 / 3} \quad f=x^{1 / 3} \quad g=4-2 x$
$y^{\prime}=\frac{1}{3}(4-2 x)^{-2 / 3}(-2)=-\frac{2}{3}(4-2 x)^{-2 / 3}$

$$
\begin{aligned}
& \text { (c) } x(t)=\frac{e^{-\pi t^{\mathbf{2} / 10}}}{100} \text { (Don't use the quotient rule here!) } \\
& x(t)=\frac{1}{100} e^{\left(\frac{\pi}{10}\right) t^{2}} \\
& x^{\prime}(t)=\frac{1}{100}\left(e^{-\frac{\pi}{10} t^{2}}\right)\left(\frac{-\pi}{10}\right)=\frac{-\pi}{500} e^{-\frac{\pi}{t} t^{2}}
\end{aligned}
$$

(d) $g(x)=\frac{50 \sqrt{2}}{x+\tan x}$ (Don't use the quotient rule here!)

$$
\begin{aligned}
& g(x)=50 \sqrt{2}(x+\tan x)^{-1} \\
& g^{\prime}(x)=(50 \sqrt{2})(-1)(x+\tan x)^{-2}\left(1+\sec ^{2} x\right)
\end{aligned}
$$

4. Suppose that $f(x)=x^{3}, g(x)=\cos (x)$ and $h(x)=7+e^{x}$.
(a) Find $F(x)=f(x)(g(h(x)))$, then find its derivative.

$$
\begin{aligned}
F(x) & =x^{3} \cos \left(7+e^{x}\right) \\
F^{\prime}(x) & =3 x^{2} \cos \left(7+e^{x}\right)+x^{3}\left(-\sin \left(7+e^{x}\right)\right)\left(e^{x}\right) \\
& =3 x^{2} \cos \left(7 e^{x}\right)-x^{3} e^{x} \sin \left(7+e^{x}\right)
\end{aligned}
$$

(b) Find $G(x)=f(g(x) h(x))$, then find its derivative.

$$
\begin{aligned}
g(x) h(x) & =(\cos x)\left(7+e^{x}\right)=7 \cos x+e^{x} \cos x \\
G(x) & =\left(7 \cos x+e^{x} \cos x\right)^{3} \\
G^{\prime}(x) & =3\left(7 \cos x+e^{x} \cos x\right)^{2}\left(-7 \sin x+e^{x} \cos x-e^{x} \sin x\right) \\
& =3\left(e^{x} \cos x-\left(7+e^{x}\right) \sin x\right)\left(7 \cos x+e^{x} \cos x\right)^{2}
\end{aligned}
$$

(c) Find $K(x)=\frac{g(x)}{h(f(x))}$, then find its derivative.

$$
\begin{aligned}
& h(f(x))=7+e^{x^{3}} \\
& \text { So } k(x)=\frac{\cos x}{7+e^{x^{3}}} \\
& \text { So } k^{\prime}(x)=\frac{\left(7+e^{x^{3}}\right)(-\sin x)-(\cos x)\left(e^{x^{3}}\left(3 x^{2}\right)\right)}{\left(7+e^{x^{3}}\right)^{2}}
\end{aligned}
$$

(d) Find $G(x)=f(g(h(x)))$, then find its derivative.

$$
\begin{aligned}
G(x) & =\left(\cos \left(7+e^{x}\right)\right)^{3} \\
G^{\prime}(x) & =3\left(\cos \left(7+e^{x}\right)\right)^{2}\left(-\sin \left(7+e^{x}\right)\right)\left(e^{x}\right) \\
& =-3 e^{x} \sin \left(7+e^{x}\right)\left[\cos \left(7+e^{x}\right)\right]^{2}
\end{aligned}
$$

