Section 3.4 The Chain Rule

1. For each function $H(x)$ below, write it as a (nontrivial) composition of functions in the form $f(g(x))$.
(b) $H(x)=e^{2-2 x}$
(a) $H(x)=\tan \left(2-x^{4}\right)$
2. Complete the Chain Rule (using both types of notation)

- If $F(x)=f(g(x))$,
then $F^{\prime}(x)=$
- If $y=f(u)$ and $u=g(x)$,
then $\frac{d y}{d x}=$

3. Find the derivative of the function. You do not need to simplify your answer.
(a) $y=\sqrt[3]{4-2 x}$
(b) $f(x)=0.04 \sin \left(3 x+e^{x}\right)$
(c) $x(t)=\frac{e^{-\pi t^{2} / 10}}{100}$ (Don't use the quotient rule here!)
(d) $g(x)=\frac{50 \sqrt{2}}{x+\tan x}$ (Don't use the quotient rule here!)
4. Suppose that $f(x)=x^{3}, g(x)=\cos (x)$ and $h(x)=7+e^{x}$.
(a) Find $F(x)=f(x)(g(h(x)))$, then find its derivative.
(b) Find $G(x)=f(g(x) h(x))$, then find its derivative.
(c) Find $K(x)=\frac{g(x)}{h(f(x))}$, then find its derivative.
(d) Find $G(x)=f(g(h(x)))$, then find its derivative.
