1. Find the derivative of
(a) $y=\left(3 x-x^{5}\right)^{2 / 3}(x-\tan (x))^{5}$.

Change the problem

$$
\begin{aligned}
& \ln y=\ln \left[\left(3 x-x^{5}\right)^{2 / 3}(x-\tan (x))^{5}\right] \\
& \ln y=\frac{2}{3} \ln \left(3 x-x^{5}\right)+5 \ln (x-\tan x)
\end{aligned}
$$

take derivative implicitly

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{y} \cdot \frac{d y}{d x}=\frac{2}{3}\left(\frac{3-5 x^{4}}{3 x-x^{5}}\right)+5\left(\frac{1-\sec ^{2} x}{x-\tan x}\right) \\
d y d x=y\left(\frac{2\left(3-5 x^{4}\right)}{3\left(3 x-x^{5}\right)}+\frac{5\left(1-\sec ^{2} x\right)}{x-\tan x}\right)
\end{array} \\
& \frac{d y}{d y}=\left(3 x-x^{5}\right)^{2 / 3}(x-\tan x)^{5}\left(\frac{2\left(3-5 x^{4}\right)}{3\left(3 x-x^{5}\right)}+\frac{5\left(1-\sec ^{2} x\right)}{x-\tan x}\right)
\end{aligned}
$$

(b) Find the derivative of $y=(\sin (x))^{x}$.

Take natural log of both sides

$$
\begin{aligned}
& \ln y=\ln \left((\sin x)^{x}\right) \\
& \ln y=x \ln (\sin x)
\end{aligned}
$$

Take derivative implicitly

$$
\begin{aligned}
& \left(\frac{1}{y}\right)\left(\frac{d y}{d x}\right)=\ln (\sin x)+x \cdot\left(\frac{1}{\sin x}\right)(\cos x) \\
& \frac{d y}{d x}=y\left(\ln (\sin x)+\frac{x \cos x}{\sin x}\right) \\
& \frac{d y}{d x}=[\sin (x)]^{x}(\ln (\sin x)+x \cot x)
\end{aligned}
$$

Replay y
2. A ball is tossed straight up into the air. It has a velocity at time $t=0$ seconds of 5 meters per second. It undergoes a constant acceleration due to gravity of -9.8 meters per second per second, $\mathrm{m} / \mathrm{s}^{2}$. The height of the ball can be written in the form

$$
h(t)=a t+b t^{2}=5 t-4.9 t^{2}
$$

where h is measured in meters, time is measured in seconds, and a and b are certain constants.
(a) Determine the values for the constants.

$$
\begin{array}{rlrl}
h^{\prime}(t) & =a+2 b t & h^{\prime \prime}(t)=2 b=-9.8 ; \text { So } b=-4.9 \\
v=h^{\prime}(0) & =a=5
\end{array}
$$

(b) What is the height of the ball at time $t=0$? At $t=1$?

$$
h(0)=0 \mathrm{~m}, \quad h(1)=5-4.9=0.1 \mathrm{~m}
$$

(c) At what times is the ball at height 0 ?

$$
\begin{aligned}
& 0=5 t-4.9 t^{2}=t(5-4.9 t) \\
& t=0 x \text { or } t=5 / 4.9=1.02 \mathrm{sec}
\end{aligned}
$$

(d) What is the average velocity of the ball over the time interval [0.2, 0.21$]$?

$$
\frac{h(0.21)-h(0.2)}{0.21-0.2}=2.991 \mathrm{~m} / \mathrm{s}
$$

(e) What is the average velocity of the ball over the time interval $[0.2,0.201]$?

$$
\frac{h(0.201)-h(0.2)}{0.201-0.2}=3.0351 \mathrm{~m} / \mathrm{s}
$$

(f) What is the instantaneous velocity of the ball at time $t=0.2$??

$$
h^{\prime}(t)=5-9.8 t \quad h^{\prime}(0.2)=5-9.8(0.2)=3.04 \mathrm{~m} / \mathrm{s}
$$

7 (g) At what time t is the ball motionless?

$$
\begin{aligned}
& \text { (g) At what time ti the ball motionless? } \\
& h^{\prime}(t)=0=5-9.8 t \text {. So } t=5.8=0.5102 \mathrm{~s}
\end{aligned}
$$

What is happening here....
(h) What is the velocity of the ball at time $t=0$? At $t=0.1$? At $t=1$?

$$
\begin{array}{ll}
h(0)=5 \mathrm{~m} / \mathrm{s} & h(1)=-4.8 \mathrm{~m} / \mathrm{s} \\
h(0.1)=4.02 \mathrm{~m} / \mathrm{s} &
\end{array}
$$

Find the area inside ripple when $t=t, t=2$.
3. A stone is thrown in a pond and a circular ripple travels outward at a speed of $60 \mathrm{~cm} / \mathrm{s}$. Determine the rate of change of area inside the ripple at time $t=1$ second and at time $t=2$ seconds.

$$
r(t)=60 t
$$

r-metes, t-seconds

$$
A(t)=\pi(60 t)^{2}=3600 \pi t^{2}
$$

$$
\begin{aligned}
A(1) & =3600 \pi \mathrm{~cm}^{2} \\
A(2) & =4(3600 \pi) \mathrm{cm}^{2} \\
& =14400 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& A^{\prime}(t)=7200 \pi t \\
& A^{\prime}(1)=7200 \pi \mathrm{~cm}^{2} / \mathrm{s} \\
& A^{\prime}(2)=14400 \pi \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

4. A population of bacteria starts at 500 cells and doubles every 30 minutes. Find a function $P(t)$ that describes this situation. Then compute the rate of change of the bacteria population at time $t=60$ minutes.

$$
\begin{aligned}
& P \text {-pop of bacteria, } t \text {-xcand } \\
& \begin{array}{l}
P(t)=5002^{t / 30} \\
P^{\prime}(t)=(500)(\ln 2)\left(2^{t / 30}\right) \cdot \frac{1}{30}=\left(\frac{50 \mathrm{ln}^{2}}{3}\right) 2^{t / 30}
\end{array} \\
& P^{\prime}(60)=\frac{50 \mathrm{~m} 2}{3} 2^{2}=46 \mathrm{bactria} / \mathrm{min}
\end{aligned}
$$

5. A population of caribou is growing, and its population is

$$
P(t)=4000 \frac{3 e^{t / 5}}{1+2 e^{t / 5}}
$$

(a) What is the population at time $t=0$?

$$
P(0)=4000\left(\frac{3 e^{\circ}}{1+2 e^{\circ}}\right)=4000\left(\frac{3}{3}\right)=4000 \text { caribou }
$$

$$
\text { (b) Determine the rate of change of the population at any time } t \text {. }
$$

(c) Determine the rate of change of the population at time $t=0$ years.

$$
P^{\prime}(0)=\frac{2400}{3^{2}}=266 \text { cariboulyr }
$$

$$
\begin{aligned}
\lim _{t \rightarrow \infty} P(t) & =\lim _{t \rightarrow \infty} 4000\left(\frac{3 e^{t / 5}}{1+2 e^{t / 5}}\right)=\lim _{t \rightarrow \infty} \frac{4000 \cdot 3}{\frac{1}{e^{3 / 5}}+2} \\
& =6000 \text { caribou }
\end{aligned}
$$

