
SECTION 3.6: LOGARITHMIC DIFFERENTIATION

1. Find the derivative of

(a) y = (3x� x5)2/3(x� tan(x))5.

(b) Find the derivative of y = (sin(x))x.
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change the problem
t
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lhy = 2g In ( 3x - E) + 5 In ( x . tanx )

take derivative implicitly
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In ( sinx )
Take derivative implicitly
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SECTION 3.7: RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES

2. A ball is tossed straight up into the air. It has a velocity at time t = 0 seconds of 5 meters per
second. It undergoes a constant acceleration due to gravity of �9.8 meters per second per second,
m/s2. The height of the ball can be written in the form

h(t) = at+ bt2

where h is measured in meters, time is measured in seconds, and a and b are certain constants.

(a) Determine the values for the constants.

(b) What is the height of the ball at time t = 0? At t = 1?

(c) At what times is the ball at height 0?

(d) What is the average velocity of the ball over the time interval [0.2, 0.21]?

(e) What is the average velocity of the ball over the time interval [0.2, 0.201]?

(f) What is the instantaneous velocity of the ball at time t = 0.2??

(g) At what time t is the ball motionless?

(h) What is the velocity of the ball at time t = 0? At t = 0.1? At t = 1?
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=5t - 4. 9t2

tilt ) = a + Zbt h " A) = Zb = - 9.8
; So

b= - 4.9 ✓

V : h
'
( o ) = a = 5 ✓

hlo ) = Om,
h( 1) ± 5-4.9=0.1 m

0=5 t - 4. 9t2=t ( S - 4.9A

t= Osuor t = 5/4.9=1.02 Sec

h( 0.21 ) - hl 0.2)

OF
= 2.991 mg

h(o2oD-h(0# = 3. 0351 m/S

#fitsg0.201-0.2

h4H= 5 - 9.8T hl ( o . 2) = 5-9.810.4=3.04 ms

in' ( H= 0 = 5 - 9,8T .

So ⇐ 54.8=0.5102/2( what is happening here ...

h ( o ) = Smls h( D= - 4.8 mls

h ( o . D= 4.02mA



3. A stone is thrown in a pond and a circular ripple travels outward at a speed of 60 cm/s. Determine
the rate of change of area inside the ripple at time t = 1 second and at time t = 2 seconds.

4. A population of bacteria starts at 500 cells and doubles every 30 minutes. Find a function P (t) that
describes this situation. Then compute the rate of change of the bacteria population at time t = 60
minutes.
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Find the aka inside

ripple wheat 't ,t=2 .
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5. A population of caribou is growing, and its population is

P (t) = 4000
3et/5

1 + 2et/5
.

(a) What is the population at time t = 0?

(b) Determine the rate of change of the population at any time t.

(c) Determine the rate of change of the population at time t = 0 years.

(d) Determine the long term population.
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Pla = 4000 (?+g÷) =
4000 (3) = 4000 caribou

" " It;;¥iik¥#e*¥⇒
tEI÷t=hY;¥.n.

p
' ( D= 2435=266 caribou / yr

first antenna
"ookI÷⇐ttia

. "I*÷
= 6000 caribou


