1. Find the derivative of
(a) $y=\left(3 x-x^{5}\right)^{2 / 3}(x-\tan (x))^{5}$.
(b) Find the derivative of $y=(\sin (x))^{x}$.

Section 3.7: Rates of Change in the Natural and Social Sciences

2. A ball is tossed straight up into the air. It has a velocity at time $t=0$ seconds of 5 meters per second. It undergoes a constant acceleration due to gravity of -9.8 meters per second per second, $\mathrm{m} / \mathrm{s}^{2}$. The height of the ball can be written in the form

$$
h(t)=a t+b t^{2}
$$

where h is measured in meters, time is measured in seconds, and a and b are certain constants.
(a) Determine the values for the constants.
(b) What is the height of the ball at time $t=0$? At $t=1$?
(c) At what times is the ball at height 0 ?
(d) What is the average velocity of the ball over the time interval $[0.2,0.21]$?
(e) What is the average velocity of the ball over the time interval $[0.2,0.201]$?
(f) What is the instantaneous velocity of the ball at time $t=0.2$??
(g) At what time t is the ball motionless?
(h) What is the velocity of the ball at time $t=0$? At $t=0.1$? At $t=1$?
3. A stone is thrown in a pond and a circular ripple travels outward at a speed of $60 \mathrm{~cm} / \mathrm{s}$. Determine the rate of change of area inside the ripple at time $t=1$ second and at time $t=2$ seconds.
4. A population of bacteria starts at 500 cells and doubles every 30 minutes. Find a function $P(t)$ that describes this situation. Then compute the rate of change of the bacteria population at time $t=60$ minutes.
5. A population of caribou is growing, and its population is

$$
P(t)=4000 \frac{3 e^{t / 5}}{1+2 e^{t / 5}}
$$

(a) What is the population at time $t=0$?
(b) Determine the rate of change of the population at any time t.
(c) Determine the rate of change of the population at time $t=0$ years.
(d) Determine the long term population.

