Name: \qquad / 12

- There are 12 points possible on this proficiency: one point per problem with no partial credit.
- You have $\mathbf{3 0}$ minutes to complete this proficiency.
- No aids (book, calculator, etc.) are permitted.
- Do not simplify your expressions.
- Your final answers should start with $f^{\prime}(x)=, \frac{d y}{d x}=$ or something similar.
- Box your final answer.

Note that this sample derivative proficiency is slightly different from the actual derivative profciency, because there are a few functions $(\ln (x)$, inverse trig functions, implicit differentiation in general) that we haven't covered yet.

1. [12 points] Compute the derivatives of the following functions.
a. $f(x)=\sqrt[5]{x}+4 x^{3}+\frac{x-\sqrt{2}}{9}=x^{1 / 5}+4 x^{3}+\frac{x}{9}-\frac{\sqrt{2}}{9}$

$$
f^{\prime}(x)=\frac{1}{5} x^{-4 / 5}+4\left(3 x^{2}\right)+\frac{1}{9}
$$

b. $y=x^{3} \tan (x)$

$$
y^{\prime}=x^{3} \sec ^{2}(x)+\tan (x)\left(3 x^{2}\right)
$$

c. $y=\frac{\sec (x)}{1+e^{x}}$

$$
y^{\prime}=\frac{\left(1+e^{x}\right)[\sec (x) \tan (x)]-\sec (x)\left(e^{x}\right)}{\left(1+e^{x}\right)^{2}}
$$

d. $y=\sin (a x) e^{b x^{2}}$ where a and b are fixed constants.

$$
y^{\prime}=\sin (a x)\left(e^{b x^{2}}(2 b x)\right)+e^{b x^{2}}(\cos (a x))(a)
$$

e. $f(x)=\frac{\cos (x)}{\sin (x)}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\sin (x)(-\sin (x))-(\cos (x))(\cos (x))}{(\sin (x))^{2}} \\
& =\frac{-(\sin (x))^{2}-(\cos (x))^{2}}{(\sin (x))^{2}}
\end{aligned}
$$

$=\frac{-(1)}{(\sin (x))^{2}}=-(\csc (x))^{2} \&$ you might have peso noticed the
f. $g(x)=\sqrt{2+\sin ^{2}(6 x)}=\left(2+\left(\sin (6 x)^{2}\right)^{1 / 2} \quad\right.$ function is $f(x)=\cot (x)$

$$
g^{\prime}(x)=\frac{1}{2}\left(2+(\sin (6 x))^{2}\right)^{-1 / 2}(2 \sin (6 x))(\cos (6 x))(6)
$$

Notice $g(x)$ is the composition of four functions:

$$
\begin{aligned}
& f_{1}(\square)=\sqrt{\square} \\
& f_{2}(\square)=2+\square^{2} \\
& f_{3}(\square)=\sin (\square) \\
& f_{4}(\square)=6 \square
\end{aligned}
$$

h. $f(z)=\sec (\sqrt{z})=\sec \left(z^{1 / 2}\right)$

$$
f^{\prime}(z)=\sec \left(z^{1 / 2}\right) \tan \left(z^{1 / 2}\right)\left(\frac{1}{2} z^{-1 / 2}\right)
$$

i. $y=\sin \left(\frac{x}{x-3}\right)$

$$
y^{\prime}=\cos \left(\frac{x}{x-3}\right)\left[\frac{(x-3)(1)-x(1)}{(x-3)^{2}}\right]
$$

$$
\begin{aligned}
& \text { j. } h(x)=\cos \left(e^{\pi x}-(4 x)^{9}\right) \\
& h^{\prime}(x)=-\sin \left(e^{\pi x}-(4 x)^{9}\right)\left(e^{\pi x} \cdot \pi-9(4 x)^{8}(4)\right)
\end{aligned}
$$

k. $g(x)=\left(\sin \left(x^{2}+x\right)\right)^{5}$

$$
g^{\prime}(x)=5\left(\sin \left(x^{2}+x\right)\right)^{4} \cos \left(x^{2}+x\right)(2 x+1)
$$

1. $f(x)=\frac{1}{9 x}=\frac{1}{9} x^{-1}$

$$
f^{\prime}(x)=\frac{1}{9}\left(-1 x^{-2}\right) \quad\left(=\frac{-1}{9 x^{2}}\right)
$$

