Name: \qquad / 12

- There are 12 points possible on this proficiency: one point per problem with no partial credit.
- You have $\mathbf{3 0}$ minutes to complete this proficiency.
- No aids (book, calculator, etc.) are permitted.
- Do not simplify your expressions.
- Your final answers should start with $f^{\prime}(x)=, \frac{d y}{d x}=$ or something similar.
- Box your final answer.

Note that this sample derivative proficiency is slightly different from the actual derivative proficiency, because there are a few functions $(\ln (x)$, inverse trig functions, implicit differentiation in general) that we haven't covered yet.

1. [12 points] Compute the derivatives of the following functions.
a. $f(x)=\sqrt[5]{x}+4 x^{3}+\frac{x-\sqrt{2}}{9}$
b. $y=x^{3} \tan (x)$
c. $y=\frac{\sec (x)}{1+e^{x}}$
d. $y=\sin (a x) e^{b x^{2}}$ where a and b are fixed constants.
e. $f(x)=\frac{\cos (x)}{\sin (x)}$
f. $g(x)=\sqrt{2+\sin ^{2}(6 x)}$
g. $y=\tan \left(x^{3} \cdot 5^{x}\right)$
h. $f(z)=\sec (\sqrt{z})$
i. $y=\sin \left(\frac{x}{x-3}\right)$
j. $h(x)=\cos \left(e^{\pi x}-(4 x)^{9}\right)$
k. $g(x)=\left(\sin \left(x^{2}+x\right)\right)^{5}$
I. $f(x)=\frac{1}{9 x}$
