1. Find all critical points of the function $f(x)=\sin (x)^{1 / 3}$.
C. p : where f^{\prime} undefined or $f^{\prime}=0$.

$$
f^{\prime}(x)=\frac{1}{3}\left(\sin (x)^{-2 / 3}(\cos x)=\frac{\cos x}{3(\sin (x))^{2 / 3}}\right.
$$

$f^{\prime}=0$ when $\cos x=0$. So $x=\ldots, \frac{-3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots=\frac{(2 k+1) \pi}{2}$ for k integer

$$
=\pi K+\frac{\pi}{2} \quad K \text { an integer. }
$$

f^{\prime} undefined when $\sin x=0$. So $x=\ldots,-2 \pi ; \pi, 0, \pi, 2 \pi, \ldots=\pi k, k$ integer.
ANSWER $f(x)$ has critical points when $x=\frac{\pi k}{2}$ for k integer.
2. Find the absolute maximum and minimum values of $f(x)=e^{-x^{2}}$ on the interval $[-2,3]$, and the locations where those values are attained.

$$
f^{\prime}(x)=-2 x e^{-x^{2}}
$$

(i) Find critical points: f^{\prime} undefined? Never. $f^{\prime}=0$? when $x=0$.
(2) Table of values:

x	$y=e^{-x^{2}}$
-2	$y=\frac{1}{e^{4}}$
0	$y=1$ rlargst
3	$y=\frac{1}{e^{9}}$ <smulust

(3) ANSWER:

1 is the abs. max at $x=0$
$\frac{1}{e^{9}}$ is the abs min at $x=3$
pretor

3. A ball thrown in the air at time $t=0$ has a height given by

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g_{0} t^{2}
$$

meters where t is measured in seconds, h_{0} is the height at time $0, v_{0}$ is the velocity (in meters per second) at time 0 and g_{0} is the constant acceleration due to gravity (in $\mathrm{m} / \mathrm{s}^{2}$). Assuming $v_{0}>0$, find the time that the ball attains its maximum height. Then find the maximum height.

Goal: Maximize $h(t)$.

$$
h^{\prime}(t)=0+v_{0}-\frac{1}{2} g_{0} \cdot(2 t)=v_{0}-g_{0} t
$$

(1) Find c.points. h^{\prime} never undefined

$$
h^{\prime}=0 \text { if } v_{0}-g_{0} t=0 \text {. So } t=V_{0} / g_{0}
$$

answer 1: $h(t)$ attains its maximum height when $t=v_{0} / g_{0}$ seconds.
(2) Plug $t=v_{0} / g_{0}$ into $h(t)$ to find maximum height:

$$
\begin{aligned}
h\left(v / g_{0}\right) & =h_{0}+v_{0}\left(v_{g} g_{0}\right)-\frac{1}{2} g_{0}\left(v_{j}\right)^{2} \\
& =h_{0}+\frac{v_{0}^{2}}{j_{0}}-\frac{1}{2} \frac{v_{0}^{2}}{g_{0}}=h_{0}+\frac{v^{2}}{29_{0}} \text { meths. }
\end{aligned}
$$

