1. Consider the function $f(x)=x^{2}$ on the interval $[-1,3]$
(a) Find the slope of the secant line of the graph of $f(x)$ from $x=-1$ to $x=3$.

$$
m_{\sec }=\frac{f(3)-f(-1)}{3-(-1)}=\frac{9-1}{3+1}=\frac{8}{4}=2
$$

(b) Find a value of x in $[-1,3]$ where $f^{\prime}(x)$ equals the value in part a.

$$
f^{\prime}(x)=2 x=2
$$

So $x=1$

(c) Make a sketch of the graph $f f(x)$ and add to it the secant line from part a and the tangent line at the location found part b. What property do the secant line and tangent line have?

$$
y=f(x)=x^{2}
$$

at $x=1, f^{\prime}(x)=2$

$$
-g(x)=x^{-1}
$$

$$
\begin{aligned}
& \text { 2. Repeat Problem } 1 \text { with the function } g(x)=1 / x \text { on }[1,5) \text {. } \\
& m_{\text {sec }}=\frac{g(5)-g(1)}{5-1}=\frac{\frac{1}{5}-1}{4}=\frac{-4}{5} \cdot \frac{1}{4}=\frac{-1}{5}=-0.20 \\
& g^{\prime}(x)=-1 x^{-2}=-\frac{1}{5} \\
& \text { So } \frac{-1}{x^{2}}=\frac{-1}{5} \\
& \text { So } x= \pm \sqrt{5} \text {. } \\
& \text { Only } x=\sqrt{5} \text { in domain. } \\
& \text { UAF Calculus } 1
\end{aligned}
$$

red lines are parallel
3. Mean Value Theorem $\mid F$ orts on $[a, b]$

- f differentiable on (a, b) one piece.

THEN there is an x-value c in (a, b) so that slope

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

4. What is the geometric meaning of the value $\frac{f(b)-f(a)}{b-a}$?
It's the slope of secant.
5. Consider the function $f(x)=|x|$ on $[-1,1]$.
(a) What would MVT say about f on $[-1,1]$?

MVT says thee should be a c in $(-1,1)$ where $f^{\prime}(c)=0$.
(b) Does MVT "work" in this case? Why or why not?

There is no c so that $f^{\prime}(c)=0$.
MUT does not apply! $f(x)$ is NOT differentiable!
6. Suppose f is a continuous function on $[a, b]$ and $f^{\prime}(x)>0$ for every x in (a, b). How do $f(a)$ and $f(b)$ compare?
MVThm:

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(a)>0
$$

7 So $f(b)-f(a)>0$
So $f(b)>f(a)$
(The graph increases!)
Now $b-a>0$ always.
7. Suppose f is a continuous function on $[a, b]$ and $f^{\prime}(x)<0$ for every x in (a, b). How do $f(a)$ and $f(b)$ compare?

$$
f(a)>f(b)
$$

8. Compare carefully the following two questions, then answer them.
(a) Suppose $f(x)=C$ on $[a, b]$, where C is a fixed constant. What can you say about $f^{\prime}(x)$?
$f^{\prime}(x)=0$. < Just a devivative rule.
(b) Suppose $f(x)$ is continuous on $[a, b]$ and $f^{\prime}(x)=0$ on (a, b). What can you say about $f(x)$?
part(b)tells us it could be a constant function but is it away 8 ?

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)=0
$$

So $f(b)-f(a)=0$ or $f(b)=f(a)$

But this is true for all x in $[a, b]$.
That is:

$$
\frac{f(b)-f(x)}{b-x}=0 \text { so } f(x)=f(b)
$$

So $f(x)=f(b)$ C some fined Constant- ${ }^{4-2}$
9. Suppose a car is traveling down the road and in 30 minutes it travels 32.7 miles. What does the Mean Value Theorem have to say about this?
average velocity is $\frac{32.7 \mathrm{mi}}{30 \mathrm{~min}}=\frac{32.7 \mathrm{mi}}{\frac{1}{2} \mathrm{hr}}=65.4 \mathrm{mi} / \mathrm{hr}$. the equiv. of
MUT $\Rightarrow \exists$ some time in that 30 minutes in m_{sec} which the car's INSTANTANEOUS velocity is $65.4 \mathrm{mi} / \mathrm{hr}$.
10. Suppose that $f(0)=-3$ and that $f^{\prime}(x)$ exists and is less than or equal to 5 for all values of x. How large can $f(2)$ possibly be?
Know $f(0)=-3$ and $f^{\prime}(x) \leq 5$. 7 So $f(2) \leq 7$.

$$
\frac{f(2)-f(0)}{2-0}=f^{\prime}(c) \leq 5
$$

So $\frac{f(2)-(-3)}{2} \leq 5$
So $\quad f(z)+3 \leq 10$
11. Corollary 7: If $f^{\prime}(x)=g^{\prime}(x)$ for all x in the interval (a, b), then

$$
f(x)=g(x)+c, c \text { fixed constant }
$$

Why? MVT to $H(x)=f(x)-g(x)$.

$$
H^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0
$$

$8 b$ tells us $H(x)=f(x)-g(x)=C$ or $f(x)=g(x)+C$

