Section 4.2: The Mean Value Theorem

1. Consider the function $f(x)=x^{2}$ on the interval $[-1,3]$
(a) Find the slope of the secant line of the graph of $f(x)$ from $x=-1$ to $x=3$.
(b) Find a value of x in $[-1,3]$ where $f^{\prime}(x)$ equals the value in part a.
(c) Make a sketch of the graph of $f(x)$ and add to it the secant line from part a and the tangent line at the location found in part b. What property do the secant line and tangent line have?
2. Repeat Problem 1 with the function $g(x)=1 / x$ on $[1,5]$.

3. Mean Value Theorem

4. What is the geometric meaning of the value $\frac{f(b)-f(a)}{b-a}$?
5. Consider the function $f(x)=|x|$ on $[-1,1]$.
(a) What would MVT say about f on $[-1,1]$?
(b) Does MVT "work" in this case? Why or why not?
6. Suppose f is a continuous function on $[a, b]$ and $f^{\prime}(x) \geq 0$ for every x in (a, b). How do $f(a)$ and $f(b)$ compare?
7. Suppose f is a continuous function on $[a, b]$ and $f^{\prime}(x) \leq 0$ for every x in (a, b). How do $f(a)$ and $f(b)$ compare?
8. Compare carefully the following two questions, then answer them.
(a) Suppose $f(x)=C$ on $[a, b]$, where C is a fixed constant. What can you say about $f^{\prime}(x)$?
(b) Suppose $f(x)$ is continuous on $[a, b]$ and $f^{\prime}(x)=0$ on (a, b). What can you say about $f(x)$?
9. Suppose a car is traveling down the road and in 30 minutes it travels 32.7 miles. What does the Mean Value Theorem have to say about this?
10. Suppose that $f(0)=-3$ and that $f^{\prime}(x)$ exists and is less than or equal to 5 for all values of x. How large can $f(2)$ possibly be?
11. Corollary 7: If $f^{\prime}(x)=g^{\prime}(x)$ for all x in the interval (a, b), then

Why?

