
4-3 Sketching Functions using Derivatives

property of f	how to recognize it	
f is increasing on (a,b) if $f(x_1) \ge f(x_2)$ for all x_1, x_2 in (a,b)	$f'(x) \ge 0$	
f is decreasing on (a,b) if $f(x_1) \leq f(x_2)$ for all x_1, x_2 in (a,b)	$f'(x) \le 0$	
f is <i>concave up</i> on (a,b) if $f'(x)$ is increasing on (a,b)	$f''(x) \ge 0$	
f is <i>concave down</i> on (a,b) if $f'(x)$ is decreasing on (a,b)	$f''(x) \le 0$	
f has a local maximum at $x=c$ if $f(c)\geq f(x)$ for all x near c	$f'(c) = 0$ and f' changes from $+$ to $-$ at $c \iff f''(c) < 0$	
$\int f$ has a local minimum at $x=c$ if $f(c)\leq f(x)$ for all x near c	$f'(c) = 0$ and f' changes from $-$ to $+$ at $c \iff f''(c) > 0$	
f has an $inflection\ point\ {\rm at}\ x=c\ {\rm if}\ f$ changes concavity at c	$f'(c)$ has a local max or min $\iff f''(c) = 0$ and f'' changes sign at c	

Below are the graphs of the FIRST DERIVATIVE, f'(x), and the SECOND DERIVATIVE, f''(x), of some unknown function f. Note that f'(x) is the solid curve and f''(x) is the dashed curve. (Assume the domain of all the functions is $(-\infty, \infty)$ and that the functions continue in the way that they are going outside the area shown.) Sketch the graph of f(x) on the given axes, and identify all the information about f(x) required in the table.

	interval or point(s)	
f is increasing	(-1, 20)	
f is decreasing	(-0-,-1)	
f has a local max	None	
f has a local min	x = -(
f is concave up	1-20,7/5) U	(3,00)
f is concave down	(7/5,3)	
f has an inflection point	x=3,7/5	