4-3 Sketching Functions using Derivatives

property of f	how to recognize it
f is increasing on (a, b) if $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ for all x_{1}, x_{2} in (a, b)	$f^{\prime}(x) \geq 0$
f is decreasing on (a, b) if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ for all x_{1}, x_{2} in (a, b)	$f^{\prime}(x) \leq 0$
f is concave $u p$ on (a, b) if $f^{\prime}(x)$ is increasing on (a, b)	$f^{\prime \prime}(x) \geq 0$
f is concave down on (a, b) if $f^{\prime}(x)$ is decreasing on (a, b)	$f^{\prime \prime}(x) \leq 0$
f has a local maximum at $x=c$ if $f(c) \geq f(x)$ for all x near c	$f^{\prime}(c)=0$ and f^{\prime} changes from + to - at $c \Longleftrightarrow$ $f^{\prime \prime}(c)<0$
f has a local minimum at $x=c$ if $f(c) \leq f(x)$ for all x near c	$f^{\prime}(c)=0$ and f^{\prime} changes from - to + at $c \Longleftrightarrow$ $f^{\prime \prime}(c)>0$
f has an inflection point at $x=c$ if f changes concavity at c	$f^{\prime}(c)$ has a local max or min $\Longleftrightarrow f^{\prime \prime}(c)=0$ and $f^{\prime \prime}$ changes sign at c

Below are the graphs of the FIRST DERIVATIVE, $f^{\prime}(x)$, and the SECOND DERIVATIVE, $f^{\prime \prime}(x)$, of some unknown function f. Note that $f^{\prime}(x)$ is the solid curve and $f^{\prime \prime}(x)$ is the dashed curve. (Assume the domain of all the functions is $(-\infty, \infty)$ and that the functions continue in the way that they are going outside the area shown.) Sketch the graph of $f(x)$ on the given axes, and identify all the information about $f(x)$ required in the table.

