## SECTION 5-3: THE FUNDAMENTAL THEOREM OF CALCULUS

**Example 1:** If *f* is the function whose graph is shown and  $g(x) = \int_0^x f(t)dt$ , find the values of g(0), g(1), g(2), g(3), g(4), g(5), and g(6). Then, sketch a rough graph of *g*.



**The Fundamental Theorem of Calculus, Part 1** If f is continuous on [a, b], the function g defined by

$$g(x) = \int_{a}^{x} f(t) dt \quad a \le x \le b$$

is continuous on [a, b] and differentiable on (a, b) and g'(x) = f(x).

**Example 2:** Find the derivative of  $g(x) = \int_{2}^{x} t^{2} dt$ .

By FTC 1, 
$$g'(x) = x^2$$
.

**Example 3:** The Fresnel function  $S(x) = \int_0^x \sin(\pi t^2/2) dt$  first appeared in Fresnel's theory of the diffraction of light waves. Recently it was be applied to the design of highways. Find the derivative of the Fresnel function. 2

By F7Cl, 
$$S'(x) = Sin\left(\frac{\pi x^2}{2}\right)$$
.

**Example 4:** Find the derivative of the following functions. (Hint: we need to use the chain rule! For part (*a*), let  $u = x^4 \dots$ 2×+1

(a) 
$$g(x) = \int_{1}^{x^{4}} \sec t dt$$
  
 $g'(u) = \int ec(u)$   
So  $g'(x) = \int ec(u) \frac{du}{ax}$   
 $= \int 2x+1 \quad (2)$   
 $= -\sqrt{2x+1} \quad (2)$ 

**Example 5:** Find the derivative of  $g(x) = \int_{\tan x}^{x^2} \frac{1}{\sqrt{2+t^4}} dt$ . (Hint: we only know the derivative of  $\int_a^x f(t) dt$ , so you need to break this into pieces...)  $g(x) = \int_{0}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} dt + \int_{tan(t^{2})}^{0} \frac{1}{\sqrt{2+t^{4}}} dt = \int_{0}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} dt - \int_{0}^{1} \frac{1}{\sqrt{2+t^{4}}} dt$  $g'(x) = \frac{1}{\sqrt{2 + (x^2)^4}} (2x) - \frac{1}{\sqrt{2 + (\tan x)^4}} (\sec^2(x)) = \frac{2x}{\sqrt{2 + x^8}} - \frac{\sec^2(x)}{\sqrt{2 + (\tan x)^4}}$ 

**The Fundamental Theorem of Calculus (Part 2)** If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, is a function such that F' = f. To determine F(b)-F(a) we write  $F(x) \mid_{a}^{b} = F(b) - F(a)$ 

**Example 6:** Evaluate the following integrals.

 $r^1$ 

(a) 
$$\int_{0}^{1} x^{2} dx$$
  
(b)  $\int_{y'_{1}}^{4} (1 + 3y - y^{2}) dy$   
 $= \frac{\chi^{3}}{3} \Big|_{0}^{1} = \frac{1^{3}}{3} - \frac{0^{3}}{3} = \frac{1}{3}$   
(b)  $\int_{y'_{1}}^{4} (1 + 3y - y^{2}) dy$   
 $= \left(\frac{y}{2} + \frac{3y^{2}}{2} - \frac{y^{3}}{3}\right) \Big|_{1}^{4}$   
 $= \left(\frac{y}{2} + \frac{3y^{2}}{2} - \frac{y^{3}}{3}\right) \Big|_{1}^{4}$   
 $= \left(\frac{4}{2} + \frac{3 \cdot 16}{2} - \frac{64}{3}\right) - \left(1 + \frac{3}{2} - \frac{1}{3}\right)$   
 $= 4 + 24 - \frac{64}{3} - 1 - \frac{3}{2} + \frac{1}{3}$   
UAF Calculus I  
 $2 = 27 - 21 - \frac{3}{2} = \frac{9}{2}$   
5-3

To compute integrals effectively you **must** have your basic antidifferentiation formulas down. You should know that antiderivatives to the following functions. Note, we are using the  $\int$  symbol to mean "find the antiderivative" of the function right after the symbol.



**Example 7:** Evaluate the following integrals.

7

(a) 
$$\int_{2}^{5} \frac{3}{x} dx$$
  
=  $3 \ln |x| \int_{2}^{5} \frac{3}{x} dx$   
=  $3 \ln |x| \int_{2}^{5} \frac{3}{x} (\ln(5) - \ln(2))$   
=  $3 \ln (x) \int_{0}^{\pi/2} \cos x dx$   
=  $5 \ln (x) \int_{0}^{\pi/2} (\ln(5) - \ln(2)) dx$   
=  $5 \ln (x) \int_{0}^{\pi/2} (\ln(5) - \ln(2)) dx$   
=  $5 \ln (x) \int_{0}^{\pi/2} (\ln(5) - \ln(2)) dx$   
=  $5 \ln (x) \int_{0}^{\pi/2} (\ln(5) - \ln(2)) dx$   
=  $5 \ln (x) \int_{0}^{\pi/2} (\ln(5) - \ln(2)) dx$   
=  $5 \ln (x) \int_{0}^{\pi/2} (\ln(5) - \ln(2)) dx$   
=  $5 \ln (x) \int_{0}^{\pi/2} (\ln(5) - \ln(2)) dx$   
=  $5 \ln (x) \int_{0}^{\pi/2} (\ln(5) - \ln(2)) dx$   
=  $5 \ln (x) \int_{0}^{\pi/2} (\ln(5) - \ln(2)) dx$   
=  $5 \ln (x) \int_{0}^{\pi/2} (\ln(5) - \ln(2)) dx$   
=  $5 \ln (x) \int_{0}^{\pi/2} (\ln(5) - \ln(2)) dx$ 

**Example 8:** Evaluate the following integrals.

(a) 
$$\int_{1}^{8} \sqrt[3]{x} dx$$
  

$$= \int_{1}^{8} \sqrt[3]{x} dx = \frac{\sqrt{3}+1}{\sqrt{3}+1} \Big|_{1}^{8}$$

$$= \frac{3 \chi}{4} \Big|_{1}^{8} = \frac{3 \cdot 2^{4}}{4} - \frac{3 \cdot 1^{4}}{4}$$

$$= 3(4) - \frac{3}{4} = \frac{48 - 3}{4}$$

$$= \frac{45}{4}$$
UAF Calculus I

(b) 
$$\int_{\pi/6}^{\pi/2} \csc x \cot x \, dx$$
$$= -C SC (x) \int_{\pi/6}^{\pi/2} = \frac{-1}{Sin(x)} \int_{\pi/2}^{\pi/2} = \frac{-1}{Sin(x)} \int_{\pi/6}^{\pi/2} = \frac{-1}{Sin(\frac{\pi}{2})} + \frac{1}{Sin(\pi/6)} = -1 + \frac{1}{\pi/2}$$
$$= 1$$

(c) 
$$\int_{0}^{1} \frac{9}{1+x^{2}} dx$$
  
= 
$$9 \int_{0}^{1} \frac{1}{1+x^{2}} dx$$
  
= 
$$9 \arctan \Big|_{0}^{1}$$
  
= 
$$9 \arctan (1) - 9 \arctan (0)$$
  
= 
$$9 \Big(\frac{\pi}{4}\Big) - 0$$
  
= 
$$\frac{9\pi}{4}$$

5-3

**Example 9:** We do not have any product or quotient rules for antidifferentiation. To evaluate an integral that is expressed as a product or quotient you must try to manipulate the integrand (the stuff inside the  $\int$  sign) to look like something you know how to anti-differentiate. The following integrals are examples of this. Evaluate the following integrals.

(a) 
$$\int_{1}^{3} \frac{x^{3} + 3x^{6}}{x^{4}} dx$$
  
 $= \int_{1}^{3} \frac{1}{x} \frac{x^{3} + 3x^{6}}{x^{4}} dx$   
 $= \int_{0}^{1} \frac{1}{3} x + x\sqrt{x} dx$   
 $= \int_{0}^{1} \frac{3}{3} x + x\sqrt{x} dx$   
 $= \int_{0}^{1} \frac{3}{3} x + x\sqrt{x} dx$   
 $= \frac{3x^{2}}{2} + \frac{x^{5/4}}{5/6} \Big|_{0}^{1}$   
 $= \frac{3x^{2}}{2} + \frac{2x^{5/4}}{5/6} \Big|_{0}^{1}$   
 $= \frac{3}{2} (x)^{2} + \frac{2}{3} (x)^{2} + \frac{19}{10} = \frac{19}{10}$   
(a)  $\int_{0}^{2} (5^{2} + x^{5}) dx$   
 $= \int_{0}^{1} \frac{1}{2} \frac{1}{\sqrt{1 - x^{2}}} dx$   
 $= \int_{0}^{1} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2$ 

**Example 11:** What is wrong with the following calculation?

$$\int_{-1}^{3} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \Big]_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3}$$

$$\int_{-1}^{1} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \Big]_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3}$$

$$\int_{-1}^{1} \frac{1}{x^2} (x - 1) + \frac{1}{x^2} (x$$