Section 5-3: The Fundamental Theorem of Calculus

Example 1: If f is the function whose graph is shown and $g(x)=\int_{0}^{x} f(t) d t$, find the values of $g(0), g(1), g(2), g(3), g(4)$, $g(5)$, and $g(6)$. Then, sketch a rough graph of g.
(a) $g(0)=$ \qquad
(b) $g(1)=$ \qquad
(c) $g(2)=$ \qquad
(d) $g(3)=$ \qquad
(e) $g(4)=$ \qquad

(f) $g(5)=$ \qquad
(g) $g(6)=$ \qquad

Sketch of $g(x)$

(i) Where is $g(x)$ increasing?
(ii) Describe f when $g(x)$ is increasing. \qquad
(iii) Where is $g(x)$ decreasing? \qquad
(iv) Describe f when $g(x)$ is decreasing.
(v) Where does $g(x)$ have a local maximum? \qquad
(vi) Describe f when $g(x)$ has a local max. \qquad
(vii) Where does $g(x)$ have a local minimum? \qquad
(viii) Describe f when $g(x)$ has a local min. \qquad

The Fundamental Theorem of Calculus, Part 1 If f is continuous on $[a, b]$, the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b) and $g^{\prime}(x)=f(x)$.

Example 2: Find the derivative of $g(x)=\int_{2}^{x} t^{2} d t$.

Example 3: The Fresnel function $S(x)=\int_{0}^{x} \sin \left(\pi t^{2} / 2\right) d t$ first appeared in Fresnel's theory of the diffraction of light waves. Recently it was be applied to the design of highways. Find the derivative of the Fresnel function.

Example 4: Find the derivative of the following functions. (Hint: we need to use the chain rule! For part (a), let $u=x^{4} \ldots$)
(a) $g(x)=\int_{1}^{x^{4}} \sec t d t$
(b) $g(x)=\int_{2 x+1}^{2} \sqrt{t} d t$

Example 5: Find the derivative of $g(x)=\int_{\tan x}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t$. (Hint: we only know the derivative of $\int_{a}^{x} f(t) d t$, so you need to break this into pieces...)

The Fundamental Theorem of Calculus (Part 2) If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f, that is, is a function such that $F^{\prime}=f$. To evaluate, we write $\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)$.

Example 6: Evaluate the following integrals.
(a) $\int_{0}^{1} x^{2} d x$
(b) $\int_{1}^{4}\left(1+3 y-y^{2}\right) d y$

To compute integrals effectively you must have your basic antidifferentiation formulas down. You should know that antiderivatives to the following functions. Note, we are using the \int symbol to mean "find the antiderivative" of the function right after the symbol.

Antiderivatives of Common Functions:

- $\int x^{n} d x=\square$
- $\int \csc x \cot x d x=$
- $\int \sin x d x=$ \qquad - $\int e^{x} d x=$ \qquad
- $\int \cos x d x=$ \qquad - $\int a^{x} d x=$ \qquad
- $\int \sec ^{2} x d x=$ \qquad
- $\int \sec x \tan x d x=$ \qquad
- $\int \csc ^{2} x d x=$ \qquad
- $\int \frac{1}{1+x^{2}} d x=$ \qquad
- $\int \frac{1}{\sqrt{1-x^{2}}} d x=$ \qquad
- $\int \frac{1}{x} d x=$ \qquad

Example 7: Evaluate the following integrals.
(a) $\int_{2}^{5} \frac{3}{x} d x$
(b) $\int_{0}^{\pi / 2} \cos x d x$

Example 8: Evaluate the following integrals.
(a) $\int_{1}^{8} \sqrt[3]{x} d x$
(b) $\int_{\pi / 6}^{\pi / 2} \csc x \cot x d x$
(c) $\int_{0}^{1} \frac{9}{1+x^{2}} d x$

Example 9: We do not have any product or quotient rules for antidifferentiation. To evaluate an integral that is expressed as a product or quotient you must try to manipulate the integrand (the stuff inside the \int sign) to look like something you know how to antidifferentiate. The following integrals are examples of this. Evaluate the following integrals.
(a) $\int_{1}^{3} \frac{x^{3}+3 x^{6}}{x^{4}} d x$
(b) $\int_{0}^{1} x(3+\sqrt{x}) d x$

Example 10: Evaluate the following integrals.
(a) $\int_{0}^{2}\left(5^{x}+x^{5}\right) d x$
(b) $\int_{1 / 2}^{\sqrt{2} / 2} \frac{1}{\sqrt{1-x^{2}}} d x$

Example 11: What is wrong with the following calculation?

$$
\int_{-1}^{3} \frac{1}{x^{2}} d x=\left.\frac{x^{-1}}{-1}\right|_{-1} ^{3}=-\frac{1}{3}-1=-\frac{4}{3}
$$

